### Article

## Влияние стратификации на группы конформных преобразований псевдоримановых орбифолдов

The groups of conformal transformations of $n$-dimensional

pseudo-Riemannian orbifolds $({\mathcal N},g)$ are investigated for $n\geq 3$.

The Alekseevskii method of the investigation of the conformal transformation groups of

Riemannian manifolds is extended by us to psevdo-Riemannian orbifolds. It is shown that

a conformal pseudo-Riemannian geometry is induced on each stratum of that orbifold. Due to this,

for $k\in\{0,1\}\cup\{3,...,n-1\}$ exact estimates of dimensions of the conformal

transformati\-on groups of $n$-dimensional pseudo-Rieman\-ni\-an orbifolds admitting $k$-dimen\-si\-onal

strata with essential conformal trans\-for\-ma\-tion groups are obtained.

A key fact in obtaining these estimates is that any connected transformation group of an

orbifold preserves every connected component of any of its strata.

The influence of stratification of $n$-dimensional pseudo-Riemann orbi\-fold

to the similarity transformation group of this orbifold is also investi\-ga\-ted for $n\geq 2$.

The exactness of the obtained estimates of the dimension of comp\-lete essential groups of conformal

transformations and the similarity transformation groups of $n$-dimensional pseudo-Riemann orbifolds

are pro\-ved by constructing the constructing examples of locally flat pseudo-Rieman\=nian orbifolds

We present a new method of investigation of G-structures on orbifolds. This method is founded on the consideration of a G-structure on an n-dimensional orbifold as the corresponding transversal structure of an associated foliation. For a given orbifold, there are different associated foliations. We construct and apply a compact associated foliation (M,F) on a compact manifold M for a compact orbifold. If an orbifold admits a G-structure, we construct and use a foliated G-bundle for the compact associated foliation. Using our method we prove the following statement.

Theorem 1. On a compact orbifold N the group of all automorphisms of an elliptic G-structure is a Lie group, this group is equipped with the compact-open topology, and its Lie group structure is defined uniquely.

By the analogy with manifolds we define the notion of an almost complex structure on orbifolds and get the following statement.

Theorem 2. The automorphism group of an almost complex structure on a compact orbifold is a Lie group, its topology is compact-open and its Lie group structure is defined uniquely.

For manifolds, the statements of Theorems 1 – 2 are classical results. Theorem 1 for manifolds was proved by Ochiai. In particular, in the case of flat elliptic G-structures on manifolds, Theorem 1 was proved by Guillemin and Sternberg and also by Ruh. Theorem 2 for manifolds was proved by Boothby, Kobayashi, Wang.

In this paper a unified method for studying foliations with transversal parabolic geometry of rank one is presented.

Ideas of Fraces' paper on parabolic geometry of rank one and of works of the author on conformal foliations

are developed.

We introduce a category of rigid geometries on smooth singular spaces of leaves of foliations.

A special category $\mathfrak F_0$ containing orbifolds is allocated. Unlike orbifolds, objects

of $\mathfrak F_0$ can have non-Hausdorff topology and can even not satisfy the separability axiom $T_0$.

It is shown that the rigid geometry $(N,\zeta)$, where $N\in (\mathfrak F_0)$, allows a desingularization. For each such geometry $( N,\zeta)$ we prove the existence and uniqueness of the structure of a finite-dimensional Lie group in the group of all automorphisms $Aut (N},\zeta)$.

The applications to the orbifolds are considered.

Among closed Lorentzian surfaces, only flat tori admit non-compact full isometry groups. Moreover, for every n > 2 the standard n-dimensional flat torus equipped with canonical metric has a non-compact full isometry Lie group. We show that this fails for n= 2 and classify the flat Lorentzian metrics on the torus with a non-compact full isometry Lie group. We also prove that every two dimensional Lorentzian orbifold is very good. This implies the existence of a unique smooth compact 2-orbifold, called the pillow, admitting Lorentzian metrics with a non-compact full isometry Lie group. We classify the metrics of this type and construct some examples.

We present a new classification of Clifford algebra elements. Our classification is based on the notion of quaternion type. Using this classification we develop a method for analyzing commutators and anticommutators of Clifford algebra elements. This method allows us to find out and prove a number of new properties of Clifford algebra elements.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.