### Article

## Low-temperature Hall effect in bismuth chalcogenides thin films

Bismuth chalcogenides are the most studied 3D topological insulators. As a rule, at low temperatures, thin films of these materials demonstrate positive magnetoresistance due to weak antilocalization. Weak antilocalization should lead to resistivity decrease at low temperatures; in experiments, however, resistivity grows as temperature decreases. From transport measurements for several thin films ( with various carrier density, thickness, and carrier mobility), and by using a purely phenomenological approach, with no microscopic theory, we show that the low-temperature growth of the resistivity is accompanied by growth of the Hall coefficient, in agreement with the diffusive electron-electron interaction correction mechanism. Our data reasonably explain the low-temperature resistivity upturn.

We analyze the entanglement spectrum of superfluid phases of $^3$He, the 3D B-phase and the planar phase in two dimensions. We find explicitly the wave functions of the low-lying eigenstates, including Majorana zero modes, as well as the corresponding part of the spectrum of the entanglement Hamiltonian.

Collective plasmon excitations in a helical electron liquid on the surface of strong three-dimensional topological insulator are considered. The properties and internal structure of these excitations are studied. Due to spin-momentum locking in helical liquid on a surface of topological insulator, the collective excitations should manifest themselves as coupled charge- and spin-density waves.

We investigate the effect of interacting quantum phase slips on persistent current and its fluctuations in ultrathin superconducting nanowires and nanorings pierced by the external magnetic flux. We derive the effective action for these systems and map the original problem onto an effective sine-Gordon theory on torus. We evaluate both the flux dependent persistent current and the critical radius of the ring beyond which this current gets exponentially suppressed by quantum fluctuations. We also analyze fluctuations of persistent current caused by quantum phase slips. At low temperatures the supercurrent noise spectrum has the form of coherent peaks which can be tuned by the magnetic flux. Experimental observation of these peaks can directly demonstrate the existence of plasma modes in superconducting nanorings.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.