### Article

## A characterization of Nikolskii–Besov classes via integration by parts

A new characterization of Nikolskii–Besov classes via integration by parts is obtained

We consider boundary value problems and transmission problems for strongly elliptic second-order systems with boundary conditions on a compact nonclosed Lipschitz surface S with Lipschitz boundary. The main goal is to find conditions for the unique solvability of these problems in the spaces Hs , the simplest L2-spaces of the Sobolev type, with the use of potential type operators on S. We also discuss, first, the regularity of solutions in somewhat more general Bessel potential spaces and Besov spaces and, second, the spectral properties of problems with spectral parameter in the transmission conditions on S, including the asymptotics of the eigenvalues.

Within the global setting of singular drifts in Morrey-Campanato spaces presented in Chamorro and Menozzi (Revista Matem´atica Iberoamericana 32(N◦4): 1445–1499 2016) we study now the H¨older regularity properties of the solutions of a transport-diffusion equation with nonlinear singular drifts that satisfy a Besov stability property. We will see how this Besov information is relevant and how it allows to improve previous results. Moreover, in some particular cases we show that as the nonlinear drift becomes more regular, in the sense of Morrey-Campanato spaces, the additional Besov stability property will be less useful.

Let \mu = e^{-V} \ dx be a probability measure and T = \nabla \Phi be the optimal transportation mapping pushing forward \mu onto a log-concave compactly supported measure \nu = e^{-W} \ dx. In this paper, we introduce a new approach to the regularity problem for the corresponding Monge--Amp{\`e}re equation e^{-V} = \det D^2 \Phi \cdot e^{-W(\nabla \Phi)} in the Besov spaces W^{\gamma,1}_{loc}. We prove that D^2 \Phi \in W^{\gamma,1}_{loc} provided e^{-V} belongs to a proper Besov class and W is convex. In particular, D^2 \Phi \in L^p_{loc} for some p>1. Our proof does not rely on the previously known regularity results.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.