### Article

## Abelian localization for cyclotomic Cherednik algebras

In this paper we prove the abelian localization theorem for modules over cyclotomic Rational Cherednik algebras.

For a complex reflection group *W* with reflection representation hh, we define and study a natural filtration by Serre subcategories of the category O_*c*(*W*,h) of representations of the rational Cherednik algebra *H_**c*(*W*,h). This filtration refines the filtration by supports and is analogous to the Harish-Chandra series appearing in the representation theory of finite groups of Lie type. Using the monodromy of the Bezrukavnikov–Etingof parabolic restriction functors, we show that the subquotients of this filtration are equivalent to categories of finite-dimensional representations over generalized Hecke algebras. When *W* is a finite Coxeter group, we give a method for producing explicit presentations of these generalized Hecke algebras in terms of finite-type Iwahori–Hecke algebras. This yields a method for counting the number of irreducible objects in O_*c*(*W*,h) of given support. We apply these techniques to count the number of irreducible representations in O_*c*(*W*,h) of given support for all exceptional Coxeter groups *W* and all parameters *c*, including the unequal parameter case. This completes the classification of the finite-dimensional irreducible representations of O_*c*(*W*,h) for exceptional Coxeter groups *W* in many new cases.

We study algebras constructed by quantum Hamiltonian reduction associated with symplectic quotients of symplectic vector spaces, including deformed preprojective algebras, symplectic reection algebras (rational Cherednik algebras), and quantization of hypertoric varieties introduced by Musson and Van den Bergh in [MVdB]. We determine BRST cohomologies associated with these quantum Hamiltonian reductions. To compute these BRST cohomologies, we make use of the method of deformation quantization (DQ-algebras) and F-action studied by Kashiwara and Rouquier in [KR], and Gordon and Losev in [GL].

Based on the methods developed in [KR], we consider microlocalization of rational Cherednik algebras of type Z/lZ. Our goal is to construct irreducible modules and standard modules of these rational Cherednik algebras by using microlocalization. As a consequence, we obtain sheaves corresponding to holonomic systems with regular singularities.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.