Article
Оценка влияний информационных сообщений на финансовую деятельность туристических организаций
The relevance of this study is due to the need to identify the degree of statistical interdependence
of text messages, which are available on the Internet, and the financial results of companies. The main purpose
of the work is to identify features of the text messages that can help to differentiate between successful organizations
and organizations, which are in crisis.
The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of systems that can analyse diverse semantic phenomena in text with the aim of extending the current state of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly challenging problems in natural language semantics. SemEval provides an exciting forum for researchers to propose challenging research problems in semantics and to build systems/techniques to address such research problems. SemEval-2016 is the tenth workshop in the series of International Workshops on Semantic Evaluation Exercises. The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004), focused on word sense disambiguation, each time growing in the number of languages offered, in the number of tasks, and also in the number of participating teams. In 2007, the workshop was renamed to SemEval, and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond word sense disambiguation. In 2012, SemEval turned into a yearly event. It currently runs every year, but on a two-year cycle, i.e., the tasks for SemEval-2016 were proposed in 2015. SemEval-2016 was co-located with the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT’2016) in San Diego, California. It included the following 14 shared tasks organized in five tracks: • Text Similarity and Question Answering Track – Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation – Task 2: Interpretable Semantic Textual Similarity – Task 3: Community Question Answering • Sentiment Analysis Track – Task 4: Sentiment Analysis in Twitter – Task 5: Aspect-Based Sentiment Analysis – Task 6: Detecting Stance in Tweets – Task 7: Determining Sentiment Intensity of English and Arabic Phrases • Semantic Parsing Track – Task 8: Meaning Representation Parsing – Task 9: Chinese Semantic Dependency Parsing • Semantic Analysis Track – Task 10: Detecting Minimal Semantic Units and their Meanings – Task 11: Complex Word Identification – Task 12: Clinical TempEval iii • Semantic Taxonomy Track – Task 13: TExEval-2 – Taxonomy Extraction – Task 14: Semantic Taxonomy Enrichment This volume contains both Task Description papers that describe each of the above tasks and System Description papers that describe the systems that participated in the above tasks. A total of 14 task description papers and 198 system description papers are included in this volume. We are grateful to all task organisers as well as the large number of participants whose enthusiastic participation has made SemEval once again a successful event. We are thankful to the task organisers who also served as area chairs, and to task organisers and participants who reviewed paper submissions. These proceedings have greatly benefited from their detailed and thoughtful feedback. We also thank the NAACL 2016 conference organizers for their support. Finally, we most gratefully acknowledge the support of our sponsor, the ACL Special Interest Group on the Lexicon (SIGLEX). The SemEval-2016 organizers, Steven Bethard, Daniel Cer, Marine Carpuat, David Jurgens, Preslav Nakov and Torsten Zesch
In many areas, such as social science, politics or market research, people need to track sentiment and their changes over time. For sentiment analysis in this field it is more important to correctly estimate proportions of each sentiment expressed in the set of documents (quantification task) than to accurately estimate sentiment of a particular document (classification). Basically, our study was aimed to analyze the effectiveness of two iterative quantification techniques and to compare their effectiveness with baseline methods. All the techniques are evaluated using a set of synthesized data and the SemEval-2016 Task4 dataset. We made the quantification methods from this paper available as a Python open source library. The results of comparison and possible limitations of the quantification techniques are discussed.
The article is concerned with results of content analysis of textbooks for high school in the area of social and human sciences. The author uses the typology of values introduced by S. Schwartz which consists of two value axes — “conservation — openness to change” and “selfassertion — caring about people and nature” — and describes values that underlie each subject area and then compares these values with results of mass surveys of the values of Russians.
In this paper, we consider opinion word extraction, one of the key problems in sentiment analysis. Sentiment analysis (or opinion mining) is an important research area within computational linguistics. Opinion words, which form an opinion lexicon, describe the attitude of the author towards certain opinion targets, i.e., entities and their attributes on which opinions have been expressed. Hence, the availability of a representative opinion lexicon can facilitate the extraction of opinions from texts. For this reason, opinion word mining is one of the key issues in sentiment analysis. We designed and implemented several methods for extracting opinion words. We evaluated these approaches by testing how well the resulting opinion lexicons help improve the accuracy of methods for determining the polarity of the reviews if the extracted opinion words are used as features. We used several machine learning methods: SVM, Logistic Regression, Naive Bayes, and KNN. By using the extracted opinion words as features we were able to improve over the baselines in some cases. Our experiments showed that, although opinion words are useful for polarity detection, they are not su fficient on their own and should be used only in combination with other features.
This book focuses on the core areas of computing and their applications in the real world. Presenting papers from the Computing Conference 2020 covers a diverse range of research areas, describing various detailed techniques that have been developed and implemented.
The Computing Conference 2020, which provided a venue for academic and industry practitioners to share new ideas and development experiences, attracted a total of 514 submissions from pioneering academic researchers, scientists, industrial engineers and students from around the globe. Following a double-blind, peer-review process, 160 papers (including 15 poster papers) were selected to be included in these proceedings.
Featuring state-of-the-art intelligent methods and techniques for solving real-world problems, the book is a valuable resource and will inspire further research and technological improvements in this important area.
There have been implemented engineering and development of multi-agent recommender system «EZSurf» that performs analysis of interests and provides recommendations for the social network «VKontakte» users based on the data from profile of particular user. During the work process different methods and technological solutions have been analyzed with examination of their advantages and disadvantages. Besides of that the comparative analysis of analogous products has been held where the most similar is Russian start-up service - Surfingbird. Based on this analysis the decision of recommender system implementation and integration has been accepted. The feature of this system is that it uses social network “VKontakte” profile for user’s data collection and API of third-party services (LastFM, TheMovieDB) for an extraction of information about similar objects. Such an approach contributes into optimization of recommender system, because it does not require creation of its own object classification system and objects database. The functionality of multi-agent system was separated between three agents. First agent (Collector) collects user data from “VKontakte” profile using VK API. Second agent (Analyzer) collects similar objects from databases of thitd-party services (LastFM, TheMovieDB) that will be the criteria for further search of recommendatory content. For search and selection of information an agent (Recommender) that works as web-crawler has been implemented. System «EZSurf» can be exploited by the users of social network “VKontakte” in everyday life for time economy on web-surfing process. At the same time they will get recommendations on content that are filtered depending on preferences of every particular user.
Beyond Journalistic Norms contests and challenges pre-established assumptions about a dominant type of journalism prevailing in different political, economic, and geographical contexts to posit the fluid, and dynamic nature of journalistic roles. The book brings together scholars from Western and Eastern Europe, North America, Latin America, and Asia, reporting findings based on data collected from democratic, transitional, and non-democratic contexts to produce thematic chapters that address how journalistic cultures vary around the globe, specifically in relation to challenges that journalists face in performing their journalistic roles. The study measures, compares, and analyzes the materialization of the interventionist, the watchdog, the loyal-facilitator, the service, the infotainment, and the civic roles in more than 30,000 print news stories from 18 countries. It also draws from hundreds of surveys with journalists to explain the link between ideals and practices, and the conditions that shape this divide. This book will be of great relevance to scholars and researchers working in the fields of journalism, journalism practices, philosophy of journalism, sociology of media, and comparative journalism research.
We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.
We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.
We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.