### Article

## Braided Yangians

Yangian-like algebras associated with current R-matrices different from the Yang ones are introduced. These algebras are of two types. The so-called braided Yangians are close to the Reflection Equation algebras, arising from involutive or Hecke symmetries. The Yangians of RTT type are close to the corresponding RTT algebras. Some properties of these two classes of the Yangian-like algebras are studied. Thus, evaluation morphisms for them are constructed, their bi-algebra structures are described, and quantum analogs of certain symmetric polynomials, in particular, the quantum determinant, are introduced. It is proved that in any braided Yangian this determinant is always central, whereas, in general, this is not true for the Yangians of RTT type. Analogs of the Cayley-Hamilton-Newton identities in the braided Yangians are exhibited. A bosonic realization of the braided Yangians is performed.

In this article, we give an explicit formula for the universal weight function of the quantum twisted affine algebra Uq(A(2)2 ). The calculations use the technique of projecting products of Drinfeld currents onto the intersection of Borel subalgebras of different types.

We describe classical top-like integrable systems arising from the quantum exchange relations and corresponding Sklyanin algebras. The Lax operator is expressed in terms of the quantum non-dynamical *R*-matrix even at the classical level, where the Planck constant plays the role of the relativistic deformation parameter in the sense of Ruijsenaars and Schneider (RS). The integrable systems (relativistic tops) are described as multidimensional Euler tops, and the inertia tensors are written in terms of the quantum and classical *R*-matrices. A particular case of gl *N* system is gauge equivalent to the *N*-particle RS model while a generic top is related to the spin generalization of the RS model. The simple relation between quantum *R*-matrices and classical Lax operators is exploited in two ways. In the elliptic case we use the Belavin’s quantum *R*-matrix to describe the relativistic classical tops. Also by the passage to the noncommutative torus we study the large *N* limit corresponding to the relativistic version of the nonlocal 2d elliptic hydrodynamics. Conversely, in the rational case we obtain a new gl *N* quantum rational non-dynamical *R*-matrix via the relativistic top, which we get in a different way — using the factorized form of the RS Lax operator and the classical Symplectic Hecke (gauge) transformation. In particular case of gl2 the quantum rational *R*-matrix is 11-vertex. It was previously found by Cherednik. At last, we describe the integrable spin chains and Gaudin models related to the obtained *R*-matrix.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.