### Article

## Frequency Spectrum of Exact Solutions of the Two-Dimensional Hydrodynamic Equations

We show that the discrete frequency spectrum of a plane hydrodynamic flow of ideal incompressible liquid with localized trajectories of the liquid particles can contain only one, two, or an infinite number of harmonics.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

A vortical model of breather overturning on deep water is proposed. The action of wind is simulated by nonuniform pressure on the free surface. The fluid motion is described by an exact solution of 2D hydrodynamic equations for an inviscid fluid in Lagrangian variables. Fluid particles rotate in circles of different radii. Formation of contraflexure points on the breather profile is studied. The mechanism of wave breaking and the role of flow vorticity are discussed.

We present an analytical description of the class of unsteady vortex surface waves generated by non- uniformly distributed, time-harmonic pressure. The fluid motion is described by an exact solution of the equations of hydrodynamics generalizing the Gerstner solution. The trajectories of the fluid particles are circumferences. The particles on a free surface rotate around circumferences of the same radii, with the centers of the circumferences lying on different horizons. A family of waves has been found in which a variable pressure acts on a limited section of the free surface. The law of external pressure distribution includes an arbitrary function. An example of the evolution of a non-uniform wave packet is considered. The wave and pressure profiles, as well as vorticity distribution are studied. It is shown that, in the case of a uniform traveling wave of external pressure, the Gerstner solution is valid but with a different form of the dispersion relation. A possibility of observing the studied waves in laboratory and in the real ocean is discussed.

The cell formation problem (CFP) is an NP-hard optimization problem considered for cell manufacturing systems. Because of its high computational complexity several heuristics have been developed for solving this problem. In this paper we present a branch and bound algorithm which provides exact solutions of the CFP. This algorithm finds optimal solutions for 13 problems of the 35 popular benchmark instances from the literature.

**Long-term deep bed filtration in porous media with size exclusion particle capture mechanism** **is studied.**** For mono dispersed suspension and transport in porous media whit distributed pore sizes, the micro stochastic model allows for upscaling and the exact solution is derived for the obtained macro scale equation system.** **Results show that** **transient pore size distribution and nonlinear relation between the filtration coefficient and captured particle concentration during suspension filtration and retention are the main features of long-term deep bed filtration, which generalises the classical deep bed filtration model and its latter modifications. Furthermore, the exact solution demonstrates earlier breakthrough and lower breakthrough concentration for larger particles. Among all the pores with different sizes, the ones with intermediate sizes (between the minimum pore size and the particle size) vanish first. Total concentration of all the pores smaller than the particles** **turns to zero asymptotically when time tends to infinity, which corresponds to complete pluggi****ng of smaller pores.**

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.