• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Quantization due to Breaking the Commutativity of Symmetries. Wobbling Oscillator and Anharmonic Penning Trap

Russian Journal of Mathematical Physics. 2016. Vol. 23. No. 4. P. 483-489.

We discuss two examples of classical mechanical systems which can become quantum either because of degeneracy of an integral of motion or because of tuning parameters at resonance. In both examples, the commutativity of the symmetry algebra is breaking, and noncommutative symmetries arise. Over the new noncommutative algebra, the system can reveal its quantum behavior including the tunneling effect. The important role is played by the creation-annihilation regime for the perturbation or anharmonism. Activation of this regime sometimes needs in an additional resonance deformation Cartan subalgebra breaking).