### Article

## Majorana boundary modes in Josephson junctions arrays with gapless bulk excitations

We report the results of the numerical study of the non-dissipative quantum Josephson junction chain with the focus on the statistics of many-body wave functions and local energy spectra. The disorder in this chain is due to the random offset charges. This chain is one of the simplest physical systems to study many-body localization. We show that the system may exhibit three distinct regimes: insulating, characterized by the full localization of many-body wavefunctions, fully delocalized (metallic) one characterized by the wavefunctions that take all the available phase volume and the intermediate regime in which the volume taken by the wavefunction scales as a non-trivial power of the full Hilbert space volume. In the intermediate, non-ergodic regime the Thouless conductance (generalized to many-body problem) does not change as a function of the chain length indicating a failure of the conventional single-parameter scaling theory of localization transition. The local spectra in this regime display the fractal structure in the energy space which is related with the fractal structure of wave functions in the Hilbert space. A simple theory of fractality of local spectra is proposed and a new scaling relationship between fractal dimensions in the Hilbert and energy space is suggested and numerically tested.

Symmetries of the physical world have guided formulation of fundamental laws, including relativistic quantum field theory and understanding of possible states of matter. Topological defects (TDs) often control the universal behavior of macroscopic quantum systems, while topology and broken symmetries determine allowed TDs. Taking advantage of the symmetry-breaking patterns in the phase diagram of nanoconfined superfluid 3He, we show that half-quantum vortices (HQVs)—linear topological defects carrying half quantum of circulation—survive transitions from the polar phase to other superfluid phases with polar distortion. In the polar-distorted A phase, HQV cores in 2D systems should harbor non-Abelian Majorana modes. In the polar-distorted B phase, HQVs form composite defects—walls bounded by strings hypothesized decades ago in cosmology. Our experiments establish the superfluid phases of 3He in nanostructured confinement as a promising topological media for further investigations ranging from topological quantum computing to cosmology and grand unification scenarios.

We consider quantum logical gates on Majorana qubits implemented in chain structures of ordinary qubits, spins, or pseudospins. We demonstrate that one can implement a two-qubit operation via local manipulations, using an extra coupler spin in a *T*-junction geometry, so that this coupler spin remains disentangled from the qubit. Furthermore, we identify a set of symmetry operations, which not only allow us to determine the resulting two-qubit gate, but also to demonstrate robustness of the resulting gate to inaccuracies in the manipulations, known for topological quantum computation.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.