### Article

## On robustness of discrete time optimal filters

A new result on stability of an optimal nonlinear filter for a Markov chain with respect to small perturbations on every step is established. An exponential recurrence of the signal is assumed.

Proceedings of the III International Conference in memory of V.I. Zubov "Stability and Control Processes (SCP 2015)".

We consider a stochastic model of clock synchronization in a wireless network of N sensors interacting with one dedicated accurate time server. For large N we find an estimate of the final time sychronization error for global and relative synchronization. The main results concern the behavior of the network on different timescales tN→∞ , N→∞ . We discuss the existence of phase transitions and find the exact timescales for which an effective clock synchronization of the system takes place.

Data mining aims at finding interesting patterns from datasets, where “interesting” means reflecting intrinsic dependencies in the domain of interest rather than just in the dataset. Concept stability is a popular relevancy measure in FCA but its behaviour have never been studied on various datasets. In this paper we propose an approach to study this behaviour. Our approach is based on a comparison of stability computation on datasets produced by the same general population. Experimental results of this paper show that high stability of a concept in one dataset suggests that concepts with the same intent in other dataset drawn from the population have also high stability. Moreover, experiments shows some asymptotic behaviour of stability in such kind of experiments when dataset size increases.

There is a lot of usefulness measures of patterns in data mining. This paper is focused on the measures used in Formal Concept Analysis (FCA). In particular, concept stability is a popular relevancy measure in FCA. Experimental results of this paper show that high stability of a pattern in a given dataset derived from the general population suggests that the stability of that pattern is high in another dataset derived from the same population. At the second part of the paper, a new estimate of stability is introduced and studied. It es performance is evaluated experimentally. And it is shown that it is more efficient.

This volume is dedicated to the 80th anniversary of academician V. M. Matrosov. The book contains reviews and original articles, which address the issues of development of the method of vector Lyapunov functions, questions of stability and stabilization control in mechanical systems, stability in differential games, the study of systems with multirate time and other. Articles prepared specially for this edition.

Using the Kepler problem as an example, one describes the Routh method for determination of steady motions and investigation of their stability.

Subsystem ASONIKA-T can operate in standalone mode or as part of ASONIKA in combination with other subsystems. Subsystem ASONIKA-T is designed to automate the modeling of thermal processes such as micro assemblies, radiators, heat-removing bases, hybrid-integrated modules, power cordwood structure, cabinets, racks, and atypical (arbitrary) structures electronics.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.