### ?

## Two-loop renormalization of the Finkel'stein theory: The specific heat

We explore the two-loop renormalization of the specific heat for an interacting disordered electron system in the case of broken time reversal symmetry. Within the nonlinear sigma model approach we derive the two-loop result for the anomalous dimension which controls scaling of the specific heat with temperature. As an example, we elaborate the metal–insulator transition near two dimensions for the case of broken time reversal and spin rotational symmetries and in the presence of Coulomb interaction. In this situation scaling of the specific heat is determined by the anomalous dimension of the Finkel’stein operator which is the eigenoperator of the renormalization group complementary to the eigenoperator corresponding to the second moment of the local density of states. We find that the absolute values of the anomalous dimensions of these operators differ beyond one-loop approximation contrary to the noninteracting case.