### Article

## Асимптотики решений задач обтекания несжимаемой жидкостью поверхностей c малыми неровностями при больших числах Рейнольдса

We study the existence conditions for a double-deck structure of a boundary layer in typical problems of incompressible fluid flow along surfaces with small irregularities (periodic or localized) for large Reynolds number. We obtain characteristic scales (a power of a small parameter included in a solution) which lead to the double-deck structure, and we obtain a formal asymptotic solution of a problem of a flow inside an axially-symmetric pipe and a two-dimensional channel with small periodic irregularities on the wall. We prove that a quasistationary solution of a Rayleigh-type equation (which describes the flow oscillation on the “upper deck” of the boundary layer with the double-deck structure, i.e. in the classical Prandtl boundary layer) exists and is stable. We obtain a formal asymptotic solution with the double-deck structure for the problem of fluid flow along a plate with small localized irregularities such as hump, step or small angle. We construct a numerical solution algorithm for all equations which we obtained and we show the results of their applications.

We consider a non-stationary problem of an incompressible viscous fluid flow along surfaces with small irregularities for large Reynolds number, which have a formal asymptotic solution with a double-deck structure of the boundary layer.

The paper presents a framework for numerical simulation that allows you to ensure saving of resources due to the numerical selection of the optimal size and temperatures in the preparation of bimetallic castings. Modeling obtained boundary and initial conditions at which the metal parts submelting first layer in the contact area with the second layer and is saved in the unmelted state of the first layer with a thickness of 1.5-2 mm, which is in contact with the mold.

In the present study, issues related to the hydrogeology of the basin of the Volga River from Rybinsk to Cheboksary Reservoir are reviewed and analyzed, evaluation of the current state of hydrogeology reservoirs on various parameters is performed. It is revealed that the erosion processes in the basin of the Gorky Reservoir has an average intensity in comparison with similar processes in the basins of the Rybinsk and Cheboksary reservoirs, but the activity is presented. Particular attention to the processes of erosion and shoreline erosion of the Gorky Reservoir is given. The mathematical and numerical model of the slope stability coefficient is presented.

A new mathematical model of heat transfer in silicon field emission pointed cathode of small dimensions is constructed which permits taking its partial melting into account. This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type problems. The approach used by the authors is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the obtained mathematical model including its parallel implementation. The results of numerical simulation conclude the book.

The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates.

In the present work the results of different scenario of the cliff of Cape Canaille hypothetic collapse (South of France) are presented. Three scenarios were considered: falling of one block, falling of several blocks in one time and debris flow avalanche. The analysis of the entire scenario was done.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.