### Article

## Milnor Attractors of Skew Products with the Fiber a Circle

For a generic skew product with the fiber a circle over an Anosov diffeomorphism, we prove that the Milnor attractor coincides with the statistical attractor, is Lyapunov stable, and either has zero Lebesgue measure or coincides with the whole phase space. As a consequence, we conclude that such skew product is either transitive or has non-wandering set of zero measure. The result is proved under the assumption that the fiber maps preserve the orientation of the circle, and the skew product is partially hyperbolic.

We summarize some of the recent works, devoted to the study of one-dimensional (pseudo)group actions and codimension one foliations. We state a conjectural alternative for such actions (generalizing the already obtained results) and describe the properties in both alternative cases. We also discuss the generalizations for holomorphic one-dimensional actions. Finally, we state some open questions that seem to be already within the reach.

The volume is dedicated to Stephen Smale on the occasion of his 80th birthday. Besides his startling 1960 result of the proof of the Poincaré conjecture for all dimensions greater than or equal to five, Smale’s ground breaking contributions in various fields in Mathematics have marked the second part of the 20th century and beyond. Stephen Smale has done pioneering work in differential topology, global analysis, dynamical systems, nonlinear functional analysis, numerical analysis, theory of computation and machine learning as well as applications in the physical and biological sciences and economics. In sum, Stephen Smale has manifestly broken the barriers among the different fields of mathematics and dispelled some remaining prejudices. He is indeed a universal mathematician. Smale has been honored with several prizes and honorary degrees including, among others, the Fields Medal(1966), The Veblen Prize (1966), the National Medal of Science (1996) and theWolf Prize (2006/2007).

The present paper is devoted to the research into the topical questions of network evolution modeling considering the constant changes in the data environment as well as the data exchange rate. A two-level approach to the network community analysis based on the division into macro- and micro-levels of monitoring is suggested. Functionality of both levels is described. Suggestions for investigation and modeling of data flows in a network represented by a dynamical system of message senders and recipients are presented.

Nonlinear differential dynamic model of the relation between the branches of production was proposed. Mathematically, this model is expressed as a system of first-order ODE. Dynamic variables of the model – the value of the output of each branch of production. Each differential equation of the system includes independent growth and diminution of finished goods; growth and decline of production related to the production of allied industries. Two models were proposed: a model with Malthusian products growth (model with no restrictions on the amount of product), the model with the Verhulst limiting of the growth of output. The equilibrium points of dynamical systems, system stability were determined as well as the qualitative analysis of dynamic systems was made.

The article is devoted to a particular case of Ivrǐ's conjecture on periodic orbits of billiards. The general conjecture states that the set of periodic orbits of the billiard in a domain with smooth boundary in the Euclidean space has measure zero. In this article we prove that for any domain with piecewise C 4-smooth boundary in the plane the set of quadrilateral trajectories of the corresponding billiard has measure zero.

We consider the 3D Navier--Stokes systems with randomly rapidly oscillating right--hand sides. Under the assumption that the random functions are ergodic and statistically homogeneous in space variables or in time variables we prove that the trajectory attractors of these systems tend to the trajectory attractors of homogenized 3D Navier--Stokes systems whose right--hand sides are the average of the corresponding terms of the original systems. We do not assume that the Cauchy problem for the considered 3D Navier--Stokes systems is uniquely solvable.

Conference covers both fundamental problems ofthe theory, and application to research of complex organizational and technical systems.

In 2006, Gorodetski proved that central fibres of perturbed skew products are Hölder continuous with respect to the base point. In this paper, we give an explicit estimate of this Hölder exponent. Moreover, we extend Gorodetski's result from the case when the fibre maps are close to the identity to a much wider class of maps that satisfy the so-called modified dominated splitting condition. In many cases (for example, in the case of skew products over the solenoid or over linear Anosov diffeomorphisms of the torus), the Hölder exponent is close to 1. This allows one to overcome the so-called Fubini nightmare, in some sense. Namely, we prove that the union of central fibres that are strongly atypical from the point of view of ergodic theory, has Lebesgue measure zero despite the lack of absolute continuity of the holonomy map for the central foliation. This result is based on a new kind of ergodic theorem, which we call special. To prove our main result, we revisit the theory of Hirsch, Pugh and Shub, and estimate the contraction constant of the graph transform map. © 2012 IOP Publishing Ltd & London Mathematical Society.