Article
Asymhtotic Model of Filtration in Almost Stationary Mode
Asymptotic model of suspension filtration in a porous media is considered. Asymptotic solution of the fil-tration problem is constructed for large values of time. To determine the asymptotics an integral form of solution is used. The asymptotics is compared with numerical solution.
Filtering the suspension in porous media is important for long-term assessment of the strength of soil in the construction of underground and hydraulic engineering structures. The geometrical and mechanical model of filtering is considered: solid particles pass freely through the larger pores, and get stuck at the entrance of tiny pores smaller than the diameter of the particles. The asymptotics of the suspended and retained particle concentrations in the suspension is constructed on the assumption of small deposit.
We explain the relation between the weak asymptotics method introduced by the author and V. M. Shelkovich and the classical Maslov-Whitham method for constructing approximate solutions describing the propagation of nonlinear solitary waves.
An example of Schrodinger and Klein-Gordon equations with fast oscillating coefficients is used to show that they can be averaged by an adiabatic approximation based on V.P. Maslov's operator method.
On the basis of full stationary Navier-Stokes and Darcy equations an asymptotic solution of the hydrodynamic calculation of the porous bearing of finite length is presented. On the basis of numerical analysis obtained in the analytical expression for the bearing capacity is established that when the permeability of the porous layer varies according to the same laws that form the lubricating film, the bearing in the bearing capacity possesses the dual action property. The effect of Reynolds number on the main bearing performance is assessed.
A group G acts infinitely transitively on a set Y if for every positive integer m, its action is m-transitive on Y. Given a real affine algebraic variety Y of dimension greater than or equal to 2, we show that, under a mild restriction, if the special automorphism group of Y (the group generated by one-parameter unipotent subgroups) is infinitely transitive on each connected component of the smooth locus Yreg , then for any real affine suspension X over Y, the special automorphism group of X is infinitely transitive on each connected component of Xreg . This generalizes a recent result given by Arzhantsev, Kuyumzhiyan, and Zaidenberg over the field of real numbers.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.