Article
Symplectic instanton bundles on ℙ3 and ’t Hooft instantons
We study the moduli space $I_{n,r}$In,r of rank-2r symplectic instanton vector bundles on $\mathbb{P}^3$ℙ3 with $r\ge 2$r⩾2 and second Chern class $n\ge r+1, n-r\equiv 1(\mathrm{mod} 2)$n⩾r+1,n−r≡1(mod2). We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus $I_{n,r}^*$I∗n,r of tame symplectic instantons is irreducible and has the expected dimension equal to $4n(r+1)-r(2r+1)$.4n(r+1)−r(2r+1) The proof is inherently based on a relation between the spaces $I_{n,r}^*$I∗n,r and the moduli spaces of ’t Hooft instantons.
Abstract This mini course is an additional part to my semester course on the theory of Jacobi modular forms given at the mathematical department of NRU HSE in Moscow (see Gritsenko Jacobi modular forms: 30 ans après; COURSERA (12 lectures and seminars), 2017–2019). This additional part contains some applications of Jacobi modular forms to the theory of elliptic genera and Witten genus. The subject of this course is related to my old talk given in Japan (see Gritsenko (Proc Symp “Automorphic forms and L-functions” 1103:71–85, 1999)).
We construct a compactification $M^{μss}$ of the Uhlenbeck–Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $\gamma: M^{ss}\to M^{μss}$, where $M^{μss}$ is the moduli space of $S$-equivalence classes of Gieseker-semistable framed sheaves. The space $M^{μss}$ has a natural set-theoretic stratification which allows one, via a Hitchin–Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.
We describe new components of the Gieseker–Maruyama moduli scheme (Formula presented.) of semistable rank 2 sheaves E on (Formula presented.) with (Formula presented.), (Formula presented.) and (Formula presented.) whose generic point corresponds to nonlocally free sheaves. We show that such components grow in number as n grows, and discuss how they intersect the instanton component. As an application, we prove that (Formula presented.) is connected, and identify a connected subscheme of (Formula presented.) consisting of seven irreducible components.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.