### Article

## On Hodge Numbers of Complete Intersections and Landau–Ginzburg Models

We prove that the Hodge number h1,N−1(X) of an N-dimensional (N 3) Fano complete intersection X is less by one then the number of irreducible components of the central fiber of (any) Calabi–Yau compactification of Givental’s Landau–Ginzburg model for X.

We show that every Picard rank one smooth Fano threefold has a weak Landau–Ginzburg model coming from a toric degeneration. The fibers of these Landau–Ginzburg models can be compactified to K3 surfaces with Picard lattice of rank 19. We also show that any smooth Fano variety of arbitrary dimension which is a complete intersection of Cartier divisors in weighted projective space has a very weak Landau–Ginzburg model coming from a toric degeneration.

We consider mirror symmetry for Fano manifolds, and describe how one can recover the classification of 3-dimensional Fano manifolds from the study of their mirrors. We sketch a program to classify 4-dimensional Fano manifolds using these ideas.

The goal of this paper is to propose a theory of mirror symmetry for varieties of general type. Using Landau–Ginzburg mirrors as motivation, we describe the mirror of a hypersurface of general type (and more generally varieties of non-negative Kodaira dimension) as the critical locus of the zero fibre of a certain Landau–Ginzburg potential. The critical locus carries a perverse sheaf of vanishing cycles. Our main result shows that one obtains the interchange of Hodge numbers expected in mirror symmetry. This exchange is between the Hodge numbers of the hypersurface and certain Hodge numbers defined using a mixed Hodge structure on the hypercohomology of the perverse sheaf.

We provide a geometric approach to constructing Lefschetz collections and Landau–Ginzburg homological projective duals from a variation of Geometric Invariant Theory quotients. This approach yields homological projective duals for Veronese embeddings in the setting of Landau–Ginzburg models. Our results also extend to a relative homological projective duality framework.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.