### Article

## Entropy and complexity of polygonal billiards with spy mirrors

We prove that a polygonal billiard with one-sided mirrors has zero topological entropy. In certain cases we show sub exponential and for others polynomial estimates on the complexity.

In the paper we construct some example of smooth dieomorphism of closed manifold. This dieomorphism has one-dimensional (in topological sense) basic set with stable invariant manifold of arbitrary nonzero dimension and the unstable invariant manifold of arbitrary dimension not less than two. The basic set has a saddle type, i.e. is neither attractor nor repeller. In addition, it follows from the construction that the dieomorphism has a positive entropy and is conservative (i.e. its jacobian equals one) in some neighborhood of the one-dimensional solenoidal basic set. The construction represented in this paper allows to construct a dieomorphism with the properties stated above on the manifold that is dieomorphic to the prime product of the circle and the sphere of codimension one

We study ergodic properties of a family of traffic maps acting in the space of bi-infinite sequences of real numbers. The corresponding dynamics mimics the motion of vehicles in a simple traffic flow, which explains the name. Using connections to topological Markov chains we obtain nontrivial invariant measures, prove their stochastic stability, and calculate the topological entropy. Technically these results in the deterministic setting are related to the construction of measures of maximal entropy via measures uniformly distributed on periodic points of a given period, while in the random setting we directly construct (spatially) Markov invariant measures. In distinction to conventional results the limiting measures in non-lattice case are non-ergodic. Average velocity of individual ``vehicles'' as a function of their density and its stochastic stability is studied as well.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.