### Article

## Reusing the Same Coloring in the Child Nodes of the Search Tree for the Maximum Clique Problem

In this paper we present a new approach to reduce the computational time spent on coloring in one of the recent branch-and-bound algorithms for the maximum clique problem. In this algorithm candidates to the maximum clique are colored in every search tree node. We suggest that the coloring computed in the parent node is reused for the child nodes when it does not lead to many new branches. So we reuse the same coloring only in the nodes for which the upper bound is greater than the current best solution only by a small value δ. The obtained increase in performance reaches 70 % on benchmark instances.

Many efficient exact branch and bound maximum clique solvers use approximate coloring to compute an upper bound on the clique number for every subproblem. This technique reasonably promises tight bounds on average, but never tighter than the chromatic number of the graph.

Li and Quan, 2010, AAAI Conference, p. 128–133 describe a way to compute even tighter bounds by reducing each colored subproblem to maximum satisfiability problem (MaxSAT). Moreover they show empirically that the new bounds obtained may be lower than the chromatic number.

Based on this idea this paper shows an efficient way to compute related “infra-chromatic” upper bounds without an explicit MaxSAT encoding. The reported results show some of the best times for a stand-alone computer over a number of instances from standard benchmarks.

A simple measure of similarity for the construction of the market graph is proposed. The measure is based on the probability of the coincidence of the signs of the stock returns. This measure is robust, has a simple interpretation, is easy to calculate and can be used as measure of similarity between any number of random variables. For the case of pairwise similarity the connection of this measure with the sign correlation of Fechner is noted. The properties of the proposed measure of pairwise similarity in comparison with the classic Pearson correlation are studied. The simple measure of pairwise similarity is applied (in parallel with the classic correlation) for the study of Russian and Swedish market graphs. The new measure of similarity for more than two random variables is introduced and applied to the additional deeper analysis of Russian and Swedish markets. Some interesting phenomena for the cliques and independent sets of the obtained market graphs are observed.

In this chapter, we present our enhancements of one of the most efficient exact algorithms for the maximum clique problem—MCS algorithm by Tomita, Sutani, Higashi, Takahashi and Wakatsuki (in Proceedings of WALCOM’10, 2010, pp. 191–203). Our enhancements include: applying ILS heuristic by Andrade, Resende and Werneck (in Heuristics 18:525–547, 2012) to find a high-quality initial solution, fast detection of clique vertices in a set of candidates, better initial coloring, and avoiding dynamic memory allocation. A good initial solution considerably reduces the search tree size due to early pruning of branches related to small cliques. Fast detecting of clique vertices is based on coloring. Whenever a set of candidates contains a vertex adjacent to all candidates, we detect it immediately by its color and add it to the current clique avoiding unnecessary branching. Though dynamic memory allocation allows to minimize memory consumption of the program, it increases the total running time. Our computational experiments show that for dense graphs with a moderate number of vertices (like the majority of DIMACS graphs) it is more efficient to store vertices of a set of candidates and their colors on stack rather than in dynamic memory on all levels of recursion. Our algorithm solves p_hat1000-3 benchmark instance which cannot be solved by the original MCS algorithm. We got speedups of 7, 3000, and 13000 times for gen400_p0.9_55, gen400_p0.9_65, and gen400_p0.9_75 instances, correspondingly.

In this article we use the modular decomposition technique for exact solving the weighted maximum clique problem. Our algorithm takes the modular decomposition tree from the paper of Tedder et. al. and finds solution recursively. Also, we propose algorithms to construct graphs with modules. We show some interesting results, comparing our solution with Ostergards algorithm on DIMACS benchmarks and on generated graphs.