### Article

## Products of modal logics and tensor products of modal algebras

One of natural combinations of Kripke complete modal logics is the product, an operation that has been extensively investigated over the last 15 years. In this paper we consider its analogue for arbitrary modal logics: to this end, we use product-like constructions on general frames and modal algebras. This operation was first introduced by Y. Hasimoto in 2000; however, his paper remained unnoticed until recently. In the present paper we quote some important Hasimoto’s results, and reconstruct the product operation in an algebraic setting: the Boolean part of the resulting modal algebra is exactly the tensor product of original algebras (regarded as Boolean rings). Also, we propose a filtration technique for Kripke models based on tensor products and obtain some decidability results.

With a set *S* of words in an alphabet *A *we associate the frame (*S*; *H*), where sHt iff *s* and *t* are words of the same length and *h*(*s*; *t*) = 1 for the Hamming distance *h*. We investigate some unimodal logics of these frames. We show that if the length of words *n* is fixed and finite, the logics are closely related to many-dimensional products of logic **S5**, so in many cases they are undecidable and not finitely axiomatizable. The relation *H* can be extended to infinite sequences. In this case we prove some completeness theorems characterizing the well-known modal logics **DB** and **TB **in terms of the Hamming distance.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

Equations for the wave perturbations of velocity and pressure in a nonisothermal atmosphere are considered. It is noted that the pressure perturbation has singularities near the altitude where the equality of the horizontal phase velocity of the perturbation and sound velocity in the medium is fulfilled. At this altitude, a thin atmospheric layer with finite mass is concentrated. The wave perturbations do not penetrate to a higher level. The presence of a singularity in the wave perturbation of pressure was numerically confirmed for the actual altitude temperature profiles of the atmosphere.

We consider modal logics of products of neighborhood frames and prove that for any pair L and L' of logics from set {S4, D4, D, T} modal logic of products of L-neighborhood frames and L'-neighborhood frames is the fusion of L and L'.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.