### Article

## Persistent currents in quantum phase slip rings

We investigate the effect of interacting quantum phase slips on persistent current and its fluctuations in ultrathin superconducting nanowires and nanorings pierced by the external magnetic flux. We derive the effective action for these systems and map the original problem onto an effective sine-Gordon theory on torus. We evaluate both the flux dependent persistent current and the critical radius of the ring beyond which this current gets exponentially suppressed by quantum fluctuations. We also analyze fluctuations of persistent current caused by quantum phase slips. At low temperatures the supercurrent noise spectrum has the form of coherent peaks which can be tuned by the magnetic flux. Experimental observation of these peaks can directly demonstrate the existence of plasma modes in superconducting nanorings.

It is well known that new effects appear in superconductors with the reduction of their size. Among them one is the most interesting – phenomenon of changing of critical temperature. It can be both decrease and increase in different metals, however, despite the number of existing works, there is still no generally accepted conception of what is exactly the origin of this effect. At the moment it is more or less clear, that this is a rather complicated mechanism, which is influenced by many factors, particularly connected with the sample’s manufacturing. Nevertheless, we suppose even after minimization of all impacts, the temperature of superconducting transition shifts anyway because of quantum size effect. We present here the results of the investigation of high-quality polycrystalline aluminum films and demonstrate the presence of quantum-confinement process that was not considered earlier. © 2019 International Institute of Refrigeration. All rights reserved.

These notes have appeared as a result of a one-term course in superfluidity and superconductivity given by the author to fourth-year undergraduate students and first-year graduate students of the Department of Physics, Moscow State University of Education. The goal was not to give a detailed picture of these two macroscopic quantum phenomena with an extensive coverage of the experimental background and all the modern developments, but rather to show how the knowledge of undergraduate quantum mechanics and statistical physics could be used to discuss the basic concepts and simple problems, and draw parallels between superconductivity and superfluidity.

Superconductivity and superfluidity are two phenomena where quantum mechanics, typically constrained to the microscopic realm, shows itself on the macroscopic level. Conceptually and mathematically, these phenomena are related very closely, and some results obtained for one can, with a few modifications, be immediately carried over to the other. However, the student of these notes should be aware of important differences between superconductivity and superfluidity that stem mainly from two facts: (1) electrons in a superconductor carry a charge, therefore one has to take into account interaction with electromagnetic radiation; (2) electrons move in a lattice, therefore phonons play a role not only a mediators of attractive interaction between pairs of electrons, but also as scatterers of charge carriers.

Although these are notes on superfluidity *and *superconductivity, and there are a few cross-references, the two subjects can be studied independently with, perhaps, a little extra work by the student to fill in the gaps resulting from such study. The material of Chapter 1 introduces the method of second quantisation that is commonly used to discuss systems with many interacting particles. It is then applied in Chaper 2 to treat the uniform weakly interacting Bose gas within the approach by N. Bogoliubov, and in Chapter 4 to formulate the theory of the uniform superconducting state put forth by J. Bardeen, L. Cooper and R. Schrieffer. Chapter 3 presents the theory proposed independently by E. Gross and L. Pitaevskii of a non-uniform weakly interacting Bose gas, with a discussion of vortices, rotation of the condensate, and the Bogoliubov equations. In Chapter 5 we discuss the Ginzburd-Landau theory of a non-uniform superconductor near the critical temperature and apply it to a few simple problems such as the surface energy of the boundary between a normal metal and a superconductor, critical current and critical magnetic field, and vortices.

A numerical study of the thermodynamic properties of a superconducting quantum cylinder in a longitudinal magnetic field is carried out. Closed-form expressions for the critical temperature, the free energy, the heat capacity jump, and the magnetization difference between the superconducting and normal phases as functions of the nanotube parameters are obtained in limit cases.

Recently bright-light control of the SSPD has been demonstrated. This attack employed a "backdoor" in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains "latched" in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs.

International Conference \Advanced Element Base of Micro- and Nano-Electronics with Using To-date Achievements of Theoretical Physics" is an annual conference of Faculty for Physics and Mathematics of Moscow Region State University (MRSU). MRSU is a leading Russian regional university. This conference is traditionally organized by Department of Theoretical Physics. The conference attracted around 120 participants from many countries and Russian regions. They have applied 83 papers to a special JPCS issue. Special session was devoted to RD of graduate and post-graduate students. The Conference program included sessions as follows:

To-Date Theoretical Physics Problems Electronics Technologies and Materials Condensed Matter Physics Aerohydrodynamics Plasma Physics Electronic devices for biological applications Space Physics and Technologies Education of Physics, Electronics and Information TechnologiesBesides of oral talks at typical scienti c sessions many papers are to be presented on-line with using to-date communication facilities. Therefore, many participants from oversea countries and Russian regions have a good opportunity to tell about their recent RD results and discuss to-date scienti c problems. Many famous scienti c organizations applied their participation in the Conference: Institute of Solid State Physics of Russian Academy of Sciences (RAS), Steklov Mathematics Institute of RAS, Moscow Institute of Physics and Technology (Technical University), Lomonosov Moscow State University, Federal RD Center of RAS \Crystallography and Photonics", Saint-Petersburg State University, Kurchatov Institute, Alikhanov Institute of Theoretical and Applied Physics, Keldysh Institute of Applied Mathematics of RAS, Computational Center of RAS, RUDN University, Bauman Moscow State Technology University, Donghua University (Shanghai, China), Higher School of Economics - National Research University, Moscow Aviation Institute (Technology University), JSC Cyclon, JSC Pulsar, BOE (China, Russian Oce), Northern Federal University (Arkhangelsk), Demidov Yaroslavl State University, Saratov National Research State University named after N. G. Chernyshevsky, Moscow Regional Research and Clinical Institute "MONIKI", K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow State University of Design and Technology and many others.

A big group of master, bachelor and post-graduate students from Institute of Solid State Physics of RAS, MRSU, MIPT, RUDN University presented their research results. The International Conference \Advanced Element Base of Micro- and Nano-Electronics with Using To-date Achievements of Theoretical Physics" becomes very important scienti c event with signi cant results of big importance for basic science and practical application.

We demonstrate evidence of coherent magnetic flux tunneling through superconducting nanowires patterned in a thin highly disordered NbN film. The phenomenon is revealed as a superposition of flux states in a fully metallic superconducting loop with the nanowire acting as an effective tunnel barrier for the magnetic flux, and reproducibly observed in different wires. The flux superposition achieved in the fully metallic NbN rings proves the universality of the phenomenon previously reported for InOx .We perform microwave spectroscopy and study the tunneling amplitude as a function of the wire width, compare the experimental results with theories, and estimate the parameters for existing theoretical models.

The thermodynamical potential of a superconducting quantum cylinder is calculated. The dependence of the critical temperature and the heat capacity of a superconducting system of the surface concentration of electrons and on the radius of the nanotube is studied.

Overview This book concisely presents the latest trends in the physics of superconductivity and superfluidity and magnetismin novel systems, as well as the problem of BCS-BEC crossover in ultracold quantum gases and high-Tc superconductors. It further illuminates the intensive exchange of ideas between these closely related fields of condensed matter physics over the last 30 years of their dynamic development. The content is based on the author’s original findings obtained at the Kapitza Institute, as well as advanced lecture courses he held at the Moscow Engineering Physical Institute, Amsterdam University, Loughborough University and LPTMS Orsay between 1994 and 2011. In addition to the findings of his group, the author discusses the most recent concepts in these fields, obtained both in Russia and in the West. The book consists of 16 chapters which are divided into four parts. The first part describes recent developments in superfluid hydrodynamics of quantum fluids and solids, including the fashionable subject of possible supersolidity in quantum crystals of 4He, while the second describes BCS-BEC crossover in quantum Fermi-Bose gases and mixtures, as well as in the underdoped states of cuprates. The third part is devoted to non-phonon mechanisms of superconductivity in unconventional (anomalous) superconductors, including some important aspects of the theory of high-Tc superconductivity. |The last part considers the anomalous normal state of novel superconductive materials and materials with colossal magnetoresistance (CMR). The book offers a valuable guide for senior-level undergraduate students and graduate students, postdoctoral and other researchers specializing in solid-state and low-temperature physics.

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.

Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.