### Article

## Holography principle for twistor spaces

Let S be a smooth rational curve on a complex manifold M. It is called ample if its normal bundle is positive: NS=⨁O(i_k),i_k<0. We assume that M is covered by smooth holomorphic deformations of S. The basic example of such a manifold is a twistor space of a hyperkähler or a 4–dimensional anti-selfdual Riemannian manifold X (not necessarily compact). We prove “a holography principle” for such a manifold: any meromorphic function defined in a neighbourhood U of S can be extended to M, and any section of a holomorphic line bundle can be extended from U to M. This is used to define the notion of a Moishezon twistor space: this is a twistor space admitting a holomorphic embedding to a Moishezon variety M′. We show that this property is local on X, and the variety M′ is unique up to birational transform. We prove that the twistor spaces of hyperkähler manifolds obtained by hyperkähler reduction of flat quaternionic-Hermitian spaces by the action of reductive Lie groups (such as Nakajima’s quiver varieties) are always Moishezon.

A trisymplectic structure on a complex 2n-manifold is a three-dimensional space ${\rm\Omega}$ of closed holomorphic forms such that any element of \Omega has constant rank 2n, n or zero, and degenerate forms in \Omega belong to a non-degenerate quadric hypersurface. We show that a trisymplectic manifold is equipped with a holomorphic 3-web and the Chern connection of this 3-web is holomorphic, torsion-free, and preserves the three symplectic forms. We construct a trisymplectic structure on the moduli of regular rational curves in the twistor space of a hyperkhler reduction. We prove that the trisymplectic reduction in the space of regular rational curves on the twistor space of a hyperkhler reduction on M. As an application of these geometric ideas, we consider the ADHM construction of instantons and show that the moduli space of rank r, charge c framed instanton bundles on \mathbb{C}\mathbb{P}^{3} is a smooth trisymplectic manifold of complex dimension 4rc. In particular, it follows that the moduli space of rank two, charge c instanton bundles on \mathbb{C}\mathbb{P}^{3} is a smooth complex manifold dimension 8c-3, thus settling part of a 30-year-old conjecture.

A hypercomplex manifold M is a manifold with a triple I,J,K of complex structure operators satisfying quaternionic relations. For each quaternion L=aI +bJ+cK, L^2=-1, L is also a complex structure operator on M, called an induced complex structure. We are studying compact complex subvarieties of (M,L), when L is a generic induced complex structure. Under additional assumptions (Obata holonomy contained in SL(n,H), existence of an HKT metric), we prove that (M,L) contains no divisors, and all complex subvarieties of codimension 2 are trianalytic (that is, also hypercomplex).

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

A Hermitian metric ω on a complex manifold is called SKT or pluriclosed if ddcω=0. Let M be a twistor space of a compact, anti-selfdual Riemannian manifold, admitting a pluriclosed Hermitian metric. We prove that in this case M is Kähler, hence isomorphic to CP3 or a flag space. This result is obtained from rational connectedness of the twistor space, due to F Campana. As an aside, we prove that the moduli space of rational curves on the twistor space of a K3 surface is Stein.

This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families. This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.

This article represents a study of ample subbundles of the tangent sheaf of a variety in a formal neighbourhood of a curve. With the added hypothesis of integrability it is best possible. A particular corollary is Mori’s cone theorem for foliations by curves.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.