Article
О топологической классификации потоков Морса-Смейла на поверхностях при помощи функции Ляпунова
We introduce the denition of consistent equivalence of Meyer ξ -functions for Morse- Smale ows on surfaces (that are Lyapunov funñtions) and state that consistent equivalence of ξ -functions is necessary and sucient condition for such ows.
This paper is the first step in stydying structure of decomposition of phase space with dimension n≥4" role="presentation" style="position: relative;">n≥4n≥4n\geq 4 on the trajectories of Morse-Smale flows (structurally stable flows with non-wandering set consisting of finite number of equilibria and closed trajectories) allowing heteroclinic intersections. More precisely, special class of Morse-Smale flows on the sphere Sn" role="presentation" style="position: relative;">SnSnSn is studied. The non-wandering set of the flow of interest consists of two nodal and two saddle equilibrium states. It is proved that for every flow from the class under consideration the intersection of invariant manifolds of two different saddle equilibrium states is nonempty and consists of a finite number of connectivity components. Heteroclinic intersections are mathematical models for magnetic field separators. Study of their structure, as well as the question of their existence, is one of the principal problems of magnetic hydrodynamics.
Continuous Morse-Smale flows on closed manifolds whose nonwandering set consists of three equilibrium positions are considered. Necessary and sufficient conditions for topological equivalence of such flows are obtained and the topological structure of the underlying manifolds is described. Bibliography: 36 titles. © 2016 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.
We study a structure of four-dimensional phase space decomposition on trajectories of Morse-Smale flows admitting heteroclinical intersections. We consider a class $G(S^4)$ of Morse-Smale flows on the sphere $S^4$ such that for any flow $f\in G(S^4)$ its non-wandering set consists of exactly four equilibria: source, sink and two saddles. Wandering set of such flows contains finite number of heteroclinical curves generating the intersection of invariant manifolds of saddle equilibria. We describe a topology of embedding of invariant manifolds of saddle equilibria that is the first step in a solution of topological classification problem.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.