• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Nonlinear wave run-up in bays of arbitrary cross-section: generalization of the Carrier-Greenspan approach

Journal of Fluid Mechanics. 2014. Vol. 748. P. 416-432.
Pelinovsky E., Didenkulova I., Rybkin A.

We present an exact analytical solution of the nonlinear shallow water theory for wave run-up in inclined channels of arbitrary cross-section, which generalizes previous studies on wave run-up for a plane beach and channels of parabolic cross-section. The solution is found using a hodograph-type transform, which extends the well-known Carrier–Greenspan transform for wave run-up on a plane beach. As a result, the nonlinear shallow water equations are reduced to a single one-dimensional linear wave equation for an auxiliary function and all physical variables can be expressed in terms of this function by purely algebraic formulas. In the special case of a U-shaped channel this equation coincides with a spherically symmetric wave equation in space, whose dimension is defined by the channel cross-section and can be fractional. As an example, the run-up of a sinusoidal wave on a beach is considered for channels of several different cross-sections and the influence of the cross-section on wave run-up characteristics is studied