Article
Cylindric filaments and velocity structure functions
We analyze a particular simple case within the framework of the vortex filament (VF) model. It gives the same basic results and allows us to understand the general case better. Advantages and weaknesses of the simplification are considered. The introduction of stochastics into the Navier–Stokes equation, the evolution of VFs and longitudinal and transverse Euler velocity structure functions are analyzed in terms of cylindric filaments.
We study the existence conditions for a double-deck structure of a boundary layer in typical problems of incompressible fluid flow along surfaces with small irregularities (periodic or localized) for large Reynolds number. We obtain characteristic scales (a power of a small parameter included in a solution) which lead to the double-deck structure, and we obtain a formal asymptotic solution of a problem of a flow inside an axially-symmetric pipe and a two-dimensional channel with small periodic irregularities on the wall. We prove that a quasistationary solution of a Rayleigh-type equation (which describes the flow oscillation on the “upper deck” of the boundary layer with the double-deck structure, i.e. in the classical Prandtl boundary layer) exists and is stable. We obtain a formal asymptotic solution with the double-deck structure for the problem of fluid flow along a plate with small localized irregularities such as hump, step or small angle. We construct a numerical solution algorithm for all equations which we obtained and we show the results of their applications.
To improve the quality of modern education project of the Center for Educational Integration of multimedia technology (CMT) in science, education and culture is proposed. CMT should be the material and technological support for master's programs, especially interdisciplinary, at the intersection of science, art and information technology, and implementation of innovative scientific and commercial projects, which should be the master's thesis.
We consider the 3D Navier--Stokes systems with randomly rapidly oscillating right--hand sides. Under the assumption that the random functions are ergodic and statistically homogeneous in space variables or in time variables we prove that the trajectory attractors of these systems tend to the trajectory attractors of homogenized 3D Navier--Stokes systems whose right--hand sides are the average of the corresponding terms of the original systems. We do not assume that the Cauchy problem for the considered 3D Navier--Stokes systems is uniquely solvable.
The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.
Radiation conditions are described for various space regions, radiation-induced effects in spacecraft materials and equipment components are considered and information on theoretical, computational, and experimental methods for studying radiation effects are presented. The peculiarities of radiation effects on nanostructures and some problems related to modeling and radiation testing of such structures are considered.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.