• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

Comparison of the time of flight current shapes predicted by hopping and multiple trapping models

Chemical Physics. 2014. Vol. 440. P. 1-7.
Tyutnev A. P., Ikhsanov R., Novikov S. V.

We have compared time-of-flight curves predicted by hopping and multiple trapping models with the Gaussian and exponential site/trap energy distributions, fitting Monte-Carlo predictions of the former with numerical calculations of the latter in a wide time domain using logarithmic coordinates lg j–lgt for the characterization of current shapes and an estimation of transit times. As a prototype hopping theory, we used the Gaussian disorder model while for representing the quasi-band theories we relied on the multiple trapping model, both of these for two types of the site/trap energy distributions. In case of the Gaussian distribution of trap depths, fitting procedure requires adjusting of the two model parameters (an energy distribution parameter r and a frequency factor m 0 ). For an exponential distribution, a one-parameter ( m 0 ) fitting suffices. The dipolar glass model, unlike the Gaussian disorder model, is basically different from the multiple trapping formalism, but a recently introduced two-layer multiple trapping model seems capable of reproducing TOF current shapes rather well.