### Article

## Alexei V. Pokrovskii (02.06.1948 -- 01.09.2010)

The paper is the obituary of Alexei V. Pokrovskii (02.06.1948 - 01.09.2010), this volume of the journal was dedicated to Alexei Pokrovskii.

The article focuses on the impact of financial crisis in Indonesia on the budget for public infrastructure, services, and transfers. The behavior response of the population to the crisis could mean future welfare costs of an economy. With this regard, multiple equilibria in the income or wealth dynamics at the household level has been suggested in such away that hysteresis can stem from a transient income. A counterfactual assessment of the local welfare impacts of the crisis, both in short and long-term is provided.

We consider a scalar fast differential equation which is periodically driven by a slowly varying input. Assuming that the equation depends on scalar parameters, we present simple sufficient conditions for the existence of a periodic canard solution, which, within a period, makes n fast transitions between the stable branch and the unstable branch of the folded critical curve. The closed trace of the canard solution on the plane of the slow input variable and the fast phase variable has n portions elongated along the unstable branch of the critical curve. We show that the length of these portions and the length of the time intervals of the slow motion separated by the short time intervals of fast transitions between the branches are controlled by the parameters.

The paper is concerned with the problem of calculating the stationary probabilities for a simplified model of the control of the access to the resources of a wireless wideband network with various thresholds for turning off and turning on the access to the resources of the network, depending on the class of service. Three variants of mutual position of hystereses are studied and, for each type of the arrangement of the hystereses, algorithms for calculating the stationary probabilities of the distribution of the amount of employed network resource are presented.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.