### Article

## Special Correlation Function Estimation for Diffusion Equation for Spreading in Porous Media

In this study we investigate the properties of correlation function of the special type. Function is used in deriving basic integro - differential equation for the evolution of the averaged concentration of particles in the presence of the random force.

Our result confirms the previously used proposition, which is the core for basic equation deriving.

We study the joint exit probabilities of particles in the totally asymmetric simple exclusion process (TASEP) from space-time sets of a given form. We extend previous results on the space-time correlation functions of the TASEP, which correspond to exits from the sets bounded by straight vertical or horizontal lines. In particular, our approach allows us to remove ordering of time moments used in previous studies so that only a natural space-like ordering of particle coordinates remains. We consider sequences of general staircase-like boundaries going from the northeast to southwest in the space-time plane. The exit probabilities from the given sets are derived in the form of a Fredholm determinant defined on the boundaries of the sets. In the scaling limit, the staircase-like boundaries are treated as approximations of continuous differentiable curves. The exit probabilities with respect to points of these curves belonging to an arbitrary space-like path are shown to converge to the universal Airy 2 process.

Homogeneous and isotropic with respect to horizontal variables random fields are useful for study of geophysical (in particular, meteorological) functions of spatial-temporal variables. The following horizontal scale (30 — 3000 km), which is induced by the spatial scale of the observing grid for the Earth’s atmosphere and by the power of modern computers for solutions of the system of hydrothermodynamics equations, which included water phase transformations etc, is important for the weather forecast problems.

The correlation functions (CFs) of the random fields may be applied for the following goals:

1) For the optimal interpolation of the meteorological information from the points of observation into the points of a regular finite-difference grid, as well as (for the checking of some observations by other ones) into another point of the observation.

2) For the models’ testing, if a climate model simulates adequately not only mean fields, but the fields of the relative dispersions and CFs, too, then we should consider the climate model as a certain one.

The CFs are evaluated by the global checked archive of meteorological observations by meteorological sounds. A special regularization procedure provides the strong positive definiteness of the CFs. The areas in the Earth atmosphere, where the isotropy hypothesis is essentially not fulfilled, were localized by a special algorithm.

Let us consider an algorithm, which can construct atmospheric fronts that separate so named homogeneous synoptic atmospheric volumes. Then we can evaluate separately CFs for the ensemble of the pairs of points, which are in a unite volume and CFs for the ensemble of the pairs of points, which are in a various volumes. We can see the difference between the different CFs. The difference will be more for a better algorithm. So, we obtain a quality criterion for such algorithms. The statistical approach given possibility to optimize the algorithm with respect to a lot of numerical parameters. The optimal algorithm was exploited in the operative regime in Hydrometeorological Center of Russia. The similar algorithms of numerical construction of boundaries between homogeneous volumes by a discrete set of observations can be realized for various physical media.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

In the knowledge-based economy perception of value changes? that finally influences on the evaluation of business cost/ Consideration of intellectual property as a wealth (and cost) creating factor imply analisis of this property's components and their roles in creation of this wealth.

The article is devoted to the investigation of the peculiarities of the functioning and implementation of the speech act "compliment". The analysis is performed on the stylized German speaking involving elements of discourse analysis - intentions, situational context and other parameters.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.