### Article

## Phase transition in random planar diagrams and RNA-type matching

We study the planar matching problem, defined by a symmetric random matrix with independent identically distributed entries, taking values 0 and 1. We show that the existence of a perfect planar matching structure is possible only above a certain critical density of allowed contacts, $p_{c}$. This problem has an important application for the prediction of the optimal folding of RNA-type polymers. Using an alternative formulation of the problem in terms of Dyck paths and a matrix model of planar contact structures, we provide an analytical estimation for the value of the transition point, $p_{c}$, in the thermodynamic limit. This estimation is close to the critical value, $p_{c}\approx 0.38$, obtained in numerical simulations based on an exact dynamic-programming algorithm. We characterize the corresponding critical behavior of the model and discuss the relation of the perfect-imperfect matching transition to the known molten-glass transition in the context of random RNA secondary structure's formation. In particular, we provide strong evidence supporting the conjecture that the molten-glass transition at $T=0$ occurs at $p_{c}$

*Abstract – *Nowadays approaches, based on models, are used in the development of the information systems. The models can be changed during the system development process by developers. They can be transformed automatically: visual model can be translated into program code; transformation from one modeling language to other can be done. The most appropriate way of the formal visual model presentation is metagraph. The best way to describe changes of visual models is the approach, based on graph grammars (graph rewriting). It is the most demonstrative way to present the transformation. But applying the graph grammar to the graph of model means to find the subgraph isomorphic to the left part of the grammar rule. This is an NP-complete task. There are some algorithms, developed for solving this task. They were designed for ordinary graphs and hypergraphs. In this article we consider some of them in case of using with the metagraphs representing models.

In this work, we explore the properties of antiferromagnetic cycloid and the phase transitions between commensurate and incommensurate magnetic states in epitaxial BiFeO3 film. Additional magnetic anisotropy induced by strain effects in the films allocates cycloids with the definite directions of spin rotation. Peculiar feature of the cycloids propagating in the films whose symmetry is different from the single crystals is the orientation of spin rotational plane that does not contain electric polarization in contrast with the bulk materials. We construct a diagram of phase transitions induced by magnetic field applied along normal to the surface and show considerable decrease of the strength of magnetic field destroying cycloid in films compared with the bulk.

A new statistical approach to alignment (finding the longest common subsequence) of two random RNA-type sequences is proposed. We have constructed a generalized ‘dynamic programming’ algorithm for finding the extreme value of the free energy of two noncoding RNAs. In our procedure, we take into account the binding free energy of two random heteropolymer chains which are capable of forming the cloverleaf-like spatial structures typical for RNA molecules. The algorithm is based on two observations: (i) the standard alignment problem can be considered as a zero-temperature limit of a more general statistical problem of binding of two associating heteropolymer chains; (ii) this last problem can be generalized naturally to consider sequences with hierarchical cloverleaf-like structures (i.e. of RNA type). The approach also permits us to perform a ‘secondary structure recovery’. Namely, we can predict the optimal secondary structures of interacting RNAs in a zero-temperature limit knowing only their primary sequences.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The dynamics of a two-component Davydov-Scott (DS) soliton with a small mismatch of the initial location or velocity of the high-frequency (HF) component was investigated within the framework of the Zakharov-type system of two coupled equations for the HF and low-frequency (LF) fields. In this system, the HF field is described by the linear Schrödinger equation with the potential generated by the LF component varying in time and space. The LF component in this system is described by the Korteweg-de Vries equation with a term of quadratic influence of the HF field on the LF field. The frequency of the DS soliton`s component oscillation was found analytically using the balance equation. The perturbed DS soliton was shown to be stable. The analytical results were confirmed by numerical simulations.