Глава
Coherent detection of weak signals with superconducting nanowire single photon detector at the telecommunication wavelength
В книге
В работе показана возможность создания на основе облученных тяжелыми ионами ядерных мембран методом матричного синтеза массива нанопроволок, состоящих из двух слоёв с различными магнитными свойствами. Отработана методика нанесения полупрозрачного (для терагерцового излучения) слоя на одной из сторон такого металло-полимерного композита. Показано, что при пропускании тока через такую структуру возможно возникновение нетеплового излучения, попадающего в терагерцовый диапазон. Изучены некоторые особенности генерации этого излучения.
A simple model of electrochemical growth of nanowires in the pores of anodic aluminum oxide (AAO) template is developed. The metal deposition is considered at various overpotentials. The model takes into consideration the ionic transfer both in the varying diffusion layer in the pores and in the diffusion layer above the template, which is determined by the external hydrodynamic conditions. The model takes into account the kinetics of electrochemical reaction by means of the Tafel equation and the diffusion transfer of metal cations both in the pores and in the outer diffusion layer. The analytical solution of the problem with several simplifications yields the equations for calculating the time dependence of current, the pore filling time, and other parameters of the process. An example of the application of the model for the analysis of nanowire growth in the template pores is compared with the experimental data showing good agreement.
These proceedings have been written in an attempt to communicate the major purpose of the NATO Advanced ResearchWorkshop (ARW), 2013, that is, to bring to light the possibilities of performance, based on the actual level, of the everpromising THz (terahertz) technology, a kind of Araba Fenice, not yet known tomost technical operators, especially its appeal in security applications. To achieve this, the ARWhas invited highly experienced scientists with expertise in THz science and technology and its application areas. We begin with the consideration that the risk of mass murder due to terroristic attacks is on the rise, thus posing a threat for security in the civil and military world. To counter this problem, we look at one of the most appealing, newly emerging, technologies that is based on the THz detection of explosives and other forms of threats. However, operational difficulties (both for THz sensors and sources), especially regarding size, complexity of use, overall cost, and the need of very low temperatures for sensors, strongly limit the application of this technology. To find solutions to these and related issues, we invited expert scientists to present review papers on the most advanced sensors and sources based on THz technology, especially for security system applications. The ARW has been conferred the major task of describing the most advanced technologies, in terms of identifying their operational strengths and weaknesses, forecasting the best technological solutions to overcome the actual operational limits, and suggesting to the NATO SPS (Science for Peace and Security) Division the most reliable ways to proceed for future developments. To achieve a broad evaluation of the above aspects, a questionnaire on various key points with regard to the actual performance and possible future developments in the field of THz science, technology, and applications has been discussed.