Книга
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108
Iss. 108. PMLR, 2020.

Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
We consider the problem of optimizing the strongly convex sum of a finite number of convex functions. Standard algorithms for solving this problem in the class of incremental/stochastic methods have at most a linear convergence rate. We propose a new incremental method whose convergence rate is superlinear – the Newton-type incremental method (NIM). The idea of the method is to introduce a model of the objective with the same sum-of-functions structure and further update a single component of the model per iteration. We prove that NIM has a superlinear local convergence rate and linear global convergence rate. Experiments show that the method is very effective for problems with a large number of functions and a small number of variables.