• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдены 62 публикации
Сортировка:
по названию
по году
Статья
Fedele T. Scientific Reports. 2017.
Добавлено: 9 октября 2019
Статья
Blythe D., Nikulin V., Müller K. Scientific Reports. 2016. Vol. 6. No. 27089.
Добавлено: 29 августа 2016
Статья
Lyukmanova E., Shulepko M., Shenkarev Z. et al. Scientific Reports. 2016. Vol. 6. No. 30698. P. 1-17.

Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a three-finger' fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC 50 ∼0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the classical' orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

Добавлено: 6 октября 2016
Статья
Lyukmanova E., Shulepko M., Shenkarev Z. et al. Scientific Reports. 2016. Vol. 6. No. 30698. P. 1-17.
Добавлено: 14 марта 2017
Статья
Moseley R., Pulvermuller F., Shtyrov Y. Scientific Reports. 2014. Vol. 3. No. 1928. P. 1-7.
Добавлено: 23 октября 2014
Статья
Volynsky P., Nolde D.E., Zakharova G. et al. Scientific Reports. 2019. Vol. 9. P. 413.
Добавлено: 10 февраля 2020
Статья
Efremov R., Нольде Д. Е., Волынский П. Е. et al. Scientific Reports. 2019. Vol. 9. No. 413. P. 1-12.
Добавлено: 6 февраля 2019
Статья
Feurra M., Blagoveshchensky E., Nikulin V. et al. Scientific Reports. 2019. Vol. 9. No. 1. P. 12858-1-12869-11.
Добавлено: 12 сентября 2019
Статья
Musaev E., Trachenko K., Bolmatov D. Scientific Reports. 2013. Vol. 3.
Добавлено: 20 октября 2014
Статья
Chugunov A.O., Volynsky P., Krylov N.A. et al. Scientific Reports. 2016. Vol. 6. P. 33112.
Добавлено: 10 февраля 2020
Статья
Chugunov A., Volynsky P., Krylov N. et al. Scientific Reports. 2016. Vol. 6. No. 33112. P. 1-16.

Heat-activated transient receptor potential channel TRPV1 is one of the most studied eukaryotic proteins involved in temperature sensation. Upon heating, it exhibits rapid reversible pore gating, which depolarizes neurons and generates action potentials. Underlying molecular details of such effects in the pore region of TRPV1 is of a crucial importance to control temperature responses of the organism. Despite the spatial structure of the channel in both open (O) and closed (C) states is known, microscopic nature of channel gating and mechanism of thermal sensitivity are still poorly understood. In this work, we used unrestrained atomistic molecular dynamics simulations of TRPV1 (without N- and C-terminal cytoplasmic domains) embedded into explicit lipid bilayer in its O- and C-states. We found that the pore domain with its neighboring loops undergoes large temperature-dependent conformational transitions in an asymmetric way, when fragments of only one monomer move with large amplitude, freeing the pore upon heating. Such an asymmetrical gating looks rather biologically relevant because it is faster and more reliable than traditionally proposed "iris-like" symmetric scheme of channel opening. Analysis of structural, dynamic, and hydrophobic organization of the pore domain revealed entropy growth upon TRPV1 gating, which is in line with current concepts of thermal sensitivity.

Добавлено: 11 ноября 2016
Статья
Gelfand M. S. Scientific Reports. 2018. Vol. 8. No. 1. P. 1-12.
Добавлено: 17 марта 2019
Статья
Saakian D. B., Yakushkina T., Hu C. Scientific Reports. 2016. Vol. 6.
Добавлено: 16 сентября 2016
Статья
Tereshina I. S., Kostyuchenko N. V., Tereshina-Chitrova E. A. et al. Scientific Reports. 2018.

Rare-earth (R)-iron alloys are a backbone of permanent magnets. Recent increase in price of rare earths has pushed the industry to seek ways to reduce the R-content in the hard magnetic materials. For this reason strong magnets with the ThMn12 type of structure came into focus. Functional properties of R(Fe,T)12 (T-element stabilizes the structure) compounds or their interstitially modified derivatives, R(Fe,T)12-X (X is an atom of hydrogen or nitrogen) are determined by the crystal-electric-field (CEF) and exchange interaction (EI) parameters. We have calculated the parameters using high-field magnetization data. We choose the ferrimagnetic Tm-containing compounds, which are most sensitive to magnetic field and demonstrate that TmFe11Ti-H reaches the ferromagnetic state in the magnetic field of 52 T. Knowledge of exact CEF and EI parameters and their variation in the compounds modified by the interstitial atoms is a cornerstone of the quest for hard magnetic materials with low rare-earth content.

Добавлено: 2 ноября 2018
Статья
Zvezdin A. Scientific Reports. 2018. Vol. 8. P. 3595.
Добавлено: 27 ноября 2019
Статья
Murphy A., Semenov A., Korneev A. et al. Scientific Reports. 2015. Vol. 5. P. 10174.
Добавлено: 3 сентября 2015
Статья
Bodrova A., Chechkin A., Cherstvy A. et al. Scientific Reports. 2016. Vol. 6. P. 1-16.
Добавлено: 18 апреля 2019
Статья
Nasretdinova V., Gerasimenko Y., Mravlje J. et al. Scientific Reports. 2019. Vol. 9. P. 15959-1-15959-11.
Добавлено: 13 ноября 2019
Статья
Butovskaya M. Scientific Reports. 2017. Vol. 7. No. 1622. P. 1-9.
Добавлено: 19 февраля 2018
Статья
Kahl O., Ferrari S., Kovalyuk V. et al. Scientific Reports. 2015. Vol. 5. P. 10941.
Добавлено: 3 сентября 2015