• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 67 публикаций
Сортировка:
по названию
по году
Статья
O. D. Dalkarov, Agafonov A., Bagulya A. et al. Physical Review Letters. 2013. Vol. 111. P. 115003-115007 .
Добавлено: 15 декабря 2013
Статья
Zybin K., Gurevich A. V., Mesyats G. A. Physical Review Letters. 2012. Vol. 109. No. 8.

 

 

Добавлено: 20 октября 2014
Статья
LHCb C., Borisyak M. A., Derkach D. et al. Physical Review Letters. 2017. Vol. 119. No. 11. P. 1-10.

A highly significant structure is observed in the Λ+cK−π+π+ mass spectrum, where the Λ+c baryon is reconstructed in the decay mode pK−π+. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Ξ++cc. The difference between the masses of the Ξ++cc and Λ+c states is measured to be 1334.94±0.72(stat)±0.27(syst MeV/c2, and the Ξ++cc mass is then determined to be 3621.40±0.72(stat)±0.27(syst±0.14(Λ+c) MeV/c2, where the last uncertainty is due to the limited knowledge of the Λ+c mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb−1, and confirmed in an additional sample of data collected at 8 TeV.

Добавлено: 10 октября 2017
Статья
Smirnov A., Soldatov T. A., Petrenko O. A. et al. Physical Review Letters. 2017. Vol. 119. P. 047204-1-047204-5.
Добавлено: 24 февраля 2018
Статья
Vdovin E. E., Mishchenko A., Greenaway M. et al. Physical Review Letters. 2016. Vol. 116. No. 18. P. 186603-1 -186603-5.

We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene–boron nitride heterostructures and are close to peaks in the single phonon density of states.

Добавлено: 31 октября 2018
Статья
S. S. Gavrilov. Physical Review Letters. 2018. Vol. 120. P. 033901-1-033901-6.
Добавлено: 4 апреля 2018
Статья
Dmitriev V. V., Senin A. A., Soldatov A. A. et al. Physical Review Letters. 2015. Vol. 115. P. 165304.
Добавлено: 26 декабря 2017
Статья
Bell M. T., Paramanandam J., Ioffe L. et al. Physical Review Letters. 2014. Vol. 112. P. 167001.
Добавлено: 21 октября 2016
Статья
Kolokolov I., Lebedev V., Gamba A. et al. Physical Review Letters. 2007. Vol. 99. P. 158101-1-158101-4.
Добавлено: 10 февраля 2017
Статья
Lunkin A., Tikhonov K., Feigelman M. Physical Review Letters. 2018. Vol. 121. No. 23. P. 236601-1-236601-5.
Добавлено: 7 ноября 2018
Статья
Glushkov V., Lobanova I., Ivanov V. et al. Physical Review Letters. 2015. Vol. 115. P. 256601-1-256601-6.

Separating between the ordinary Hall effect and anomalous Hall effect in the paramagnetic phase of Mn1−xFexSi reveals an ordinary Hall effect sign inversion associated with the hidden quantum critical (QC) point x ∼ 0.11. The effective hole doping at intermediate Fe content leads to verifiable predictions in the field of fermiology, magnetic interactions, and QC phenomena in Mn1−xFexSi. The change of electron and hole concentrations is considered as a “driving force” for tuning the QC regime in Mn1−xFexSi via modifying the Ruderman-Kittel-Kasuya-Yosida exchange interaction within the Heisenberg model of magnetism.

Добавлено: 10 марта 2016
Статья
LHCb C., Derkach D., Kazeev N. et al. Physical Review Letters. 2017. Vol. 119. No. 18. P. 181807-1-181807-9.
Добавлено: 23 ноября 2017
Статья
Borisyak M. A., Derkach D., Likhomanenko T. et al. Physical Review Letters. 2016. Vol. 117. No. 15.
Добавлено: 24 октября 2016
Статья
Borisyak M. A., Ratnikov F., Ustyuzhanin A. Physical Review Letters. 2017. Vol. 118. No. 25. P. 251802-251812.
Добавлено: 22 октября 2017
Статья
Derkach D., Ustyuzhanin A., Rogozhnikov A. et al. Physical Review Letters. 2016. Vol. 116. No. 24. P. 241601.
Добавлено: 21 октября 2016
Статья
Stoutimore M. J., Rossolenko A. N., Bolginov V. V. et al. Physical Review Letters. 2018. Vol. 121. No. 177702. P. 177702-1-177702-5.
Добавлено: 2 ноября 2018
Статья
Kolokolov I., Falkovich G., Chertkov M. et al. Physical Review Letters. 1999. Vol. 83. No. 20. P. 4065-4068.
Добавлено: 5 марта 2017
Статья
Bell M., Zhang W., Ioffe L. et al. Physical Review Letters. 2016. Vol. 116. P. 107002.
Добавлено: 21 октября 2016
Статья
Teneh N., Kuntsevich A., Pudalov V. et al. Physical Review Letters. 2012. Vol. 109. P. 226403.
Добавлено: 15 октября 2016
Статья
Kugel K., Rakhmanov A., Rozhkov A. et al. Physical Review Letters. 2017. Vol. 119. No. 10. P. 107601-1-107601-6.
Добавлено: 17 октября 2017
Статья
Zybin K., Gurevich A. V., Antonova V. P. et al. Physical Review Letters. 2012. Vol. 108. No. 12.
Добавлено: 20 октября 2014