• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 54 049 публикаций
Сортировка:
по названию
по году
Статья
Ivanova M., Kuptsova S., Dronkers N. Aphasiology. 2017. Vol. 31. P. 265-281.
Добавлено: 5 июня 2016
Статья
Coates D. C., Agha N. Contemporary Economic Policy. 2015. Vol. 33. No. 2. P. 285-299.

This research utilizes a compensating differential framework to measure the social benefits of minor league baseball teams. Consistent with findings at the major league level, individual housing observations from 138 metropolitan areas between 1993 and 2005 show that affiliated teams are associated with a significant 5.7% increase in rents in mid-sized markets ranging from 0.4 to 1.4 million people. On the other hand, independent teams and stadiums are associated with insignificant effects on rents. The positive effect of affiliated minor league teams suggests they are a valuable urban amenity that can contribute to local quality of life. (JEL H23, H41, H71, R50, and L83)

Добавлено: 9 декабря 2015
Статья
Malyshev D. Journal of Combinatorial Optimization. 2016. Vol. 32. No. 1. P. 226-243.
Добавлено: 4 апреля 2015
Статья
Fomichov V. A. International Journal of Intelligent Computing and Cybernetics. 2008. Vol. 1. No. 1. P. 143-163.
Добавлено: 30 октября 2008
Статья
Goldengorin B. I., Krushinsky D. Lecture Notes in Computer Science. 2011. Vol. 6701. P. 503-516.
Добавлено: 30 июля 2012
Статья
Khoroshkin S. M., Пакуляк С. З. Kyoto Journal of Mathematics. 2008. Vol. 48. No. 2. P. 277-321.
Добавлено: 15 октября 2012
Статья
Poelmans J., Dedene G., Viaene S. et al. Lecture Notes in Computer Science. 2011. Vol. 6828. P. 201-214.
Добавлено: 6 марта 2012
Статья
Romashchenko A., Kaced T., Vereshchagin N. IEEE Transactions on Information Theory. 2018. Vol. 64. No. 5. P. 3610-3615.
Добавлено: 6 апреля 2018
Статья
Shumilin M. Classical Quarterly. 2018. Vol. 68. P. 351-352.

В строке 27.15 "Нового Апулея" (опубликованного в 2016 г. Джастином Стовером как III книга апулеевского De Platone латинского пересказа ряда диалогов Платона) предлагается вместо рукописного ordinem queri и конъектуры Стовера ordine cieri читать ordine moueri.

Добавлено: 22 сентября 2018
Статья
Tumanova A. S. Russian Studies in History. 2015. Vol. 53. No. 3. P. 38-55.
Добавлено: 1 июня 2015
Статья
Miwa T., Hong J., Feigin B. L. Moscow Mathematical Journal. 2003. Vol. 3. No. 4. P. 1247-1267.
Добавлено: 31 мая 2010
Статья
Bogomolov F. A., Greenleaf F. P. Proceedings of the Edinburgh Mathematical Society. 2014. Vol. 57. No. 1. P. 31-53.
Добавлено: 15 августа 2014
Статья
Fomichov V. A., Fomichova O. S. Informatica. 2012. Vol. 36. No. 2. P. 121-130.
Статья обосновывает необходимость значительно более ранней социализации детей в век Интернета. Главная цель – сделать так, чтобы дети (в том числе подростки) осознавали возможные социальные последствия недобросовестного использования ими информационно-коммуникационных технологий, в частности, мобильных телефонов и Интернета. Излагается оригинальный метод раннего формирования когнитивного подпространства моральных ценностей. Он является частью системы эмоционально-образного обучения (ЭОО-системы), разработанной и успешно апробированной авторами в 1990-е – 2000-е годы. Для описания этого метода предлагается новая формальная нотация, предназначенная для представления преобразований когнитивно-эмоциональной сферы обучаемых и спектра их навыков обработки информации, эта нотация называется нотацией карт когнитивных преобразований. Предложенный метод ранней социализации детей и ЭОО-система в целом интерпретируются как важный компонент когнитоники – новой научной дисциплины. В статье также излагается новый подход к рассмотрению импрессионизма в рамках когнитоники. Предложен оригинальный алгоритм преобразования негативных эмоций (вызванных сообщениями, полученными через социальные сети) в позитивные. Этот алгоритм рассматривает возможные реакции человека (в том числе рекомендуемые реакции) на эмоциональные атаки, осуществляемые через социальные сети. Предлагается включить такой алгоритм в программу междисциплинарного курса «Основы безопасной жизни в информационном обществе».
Добавлено: 20 ноября 2012
Статья
Bobashev G., Holloway J., Solano E. et al. Methods Reports. 2017. Vol. июнь. P. 1-20.

e present a heuristic control theory model that describes smoking under restricted and unrestricted access to cigarettes. The model is based on the allostasis theory and uses a formal representation of a multiscale opponent process. The model simulates smoking behavior of an individual and produces both short-term (“loading up” after not smoking for a while) and long-term smoking patterns (e.g., gradual transition from a few cigarettes to one pack a day). By introducing a formal representation of withdrawal- and craving-like processes, the model produces gradual increases over time in withdrawal- and craving-like signals associated with abstinence and shows that after 3 months of abstinence, craving disappears. The model was programmed as a computer application allowing users to select simulation scenarios. The application links images of brain regions that are activated during the binge/intoxication, withdrawal, or craving with corresponding simulated states. The model was calibrated to represent smoking patterns described in peer-reviewed literature; however, it is generic enough to be adapted to other drugs, including cocaine and opioids. Although the model does not mechanistically describe specific neurobiological processes, it can be useful in prevention and treatment practices as an illustration of drug-using behaviors and expected dynamics of withdrawal and craving during abstinence.

Добавлено: 16 октября 2017
Статья
Zlotnik A., Čiegis R. Applied Mathematics Letters. 2018. Vol. 80. P. 35-40.
Добавлено: 6 января 2018
Статья
Boros E., Elbassioni K., Gurvich V. et al. Optimization Letters. 2017. Vol. 11. No. 8. P. 1499-1512.

We consider two-person zero-sum stochastic mean payoff games with perfect information, or BWR-games, given by a digraph (Formula presented.), with local rewards (Formula presented.), and three types of positions: black (Formula presented.), white (Formula presented.), and random (Formula presented.) forming a partition of V. It is a long-standing open question whether a polynomial time algorithm for BWR-games exists, even when (Formula presented.). In fact, a pseudo-polynomial algorithm for BWR-games would already imply their polynomial solvability. In this short note, we show that BWR-games can be solved via convex programming in pseudo-polynomial time if the number of random positions is a constant. 

Добавлено: 18 мая 2017
Статья
Artale A., Kontchakov R., Ryzhikov V. et al. ACM Transactions on Computational Logic. 2014. Vol. 15. No. 3. P. 25.1-25.50.

We design temporal description logics (TDLs) suitable for reasoning about temporal conceptual data models and investigate their computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. The logics are interpreted over the Cartesian products of object domains and the flow of time (ℤ, <), satisfying the constant domain assumption. Concept and role inclusions of the TBox hold at all moments of time (globally), and data assertions of the ABox hold at specified moments of time. To express temporal constraints of conceptual data models, the languages are equipped with flexible and rigid roles, standard future and past temporal operators on concepts, and operators “always” and “sometime” on roles. The most expressive of our TDLs (which can capture lifespan cardinalities and either qualitative or quantitative evolution constraints) turns out to be undecidable. However, by omitting some of the temporal operators on concepts/roles or by restricting the form of concept inclusions, we construct logics whose complexity ranges between NLogSpace and PSpace. These positive results are obtained by reduction to various clausal fragments of propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about temporal data models.

Добавлено: 25 марта 2015
Статья
Maggi M., Fantazzini D., DeGiuli M. et al. Applied Economics. 2010. No. 42 (25). P. 3267-3277.
Добавлено: 14 января 2011
Статья
Gouezel S., Щур В. Л. Journal of Functional Analysis. 2019. P. 1-11.
Добавлено: 22 марта 2019
Статья
Shitov Y. Linear Algebra and its Applications. 2017. Vol. 513. P. 120-121.
Добавлено: 21 октября 2016
Статья
Shitov Y. Linear Algebra and its Applications. 2016. Vol. 511. P. 19-21.
Добавлено: 7 сентября 2016