• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 197 публикаций
Сортировка:
по названию
по году
Статья
Kryzhanovskaya N., Polubavkina Y., Moiseev E. et al. Journal of Applied Physics. 2017. Vol. 121. No. 4. P. 043104.
Добавлено: 1 октября 2020
Статья
Hu H., Wang D., Ren F. et al. International Journal of Multiphase Flow. 2018. Vol. 104. P. 166-173.
Добавлено: 8 марта 2018
Статья
Zvyagina A. I., Melnikova E. K., Averin A. A. et al. Carbon. 2018. Vol. 134. P. 62-70.
Добавлено: 16 июля 2018
Статья
Gurina D., Budkov Y., Kiselev M. Journal of Molecular Liquids. 2021.
Добавлено: 10 мая 2021
Статья
Бобров М., Blokhin S., Малеев Н. et al. Journal of Physics: Conference Series. 2019. Vol. 1410. No. 1. P. 012002.
Добавлено: 9 декабря 2020
Статья
Samolenko A. A., Levin G. G., Lyaskovskii V. et al. Optics and Spectroscopy. 2017. Vol. 122. No. 6. P. 1002-1004.

The results of an experimental investigation of a sensor intended for detection and measurement of concentration of nanoparticles in an aqueous medium, which is based on optical-dielectric whispering-gallery- mode microcavities, are presented. Variation of the frequency and Q-factor of the eigenmodes of the microcavity upon its interaction with silver nanoparticles is studied. It is demonstrated that this type of sensor can be used for measurement of infinitesimally low concentrations of nanoparticles.

Добавлено: 25 мая 2018
Статья
Bao L., Huang Z., Priezjev N. et al. Applied Surface Science. 2018. Vol. 437. P. 202-208.
Добавлено: 27 января 2018
Статья
Budkov Y. Journal of Physics: Condensed Matter. 2020. Vol. 32. No. 5. P. 055101-1-055101-8.
Добавлено: 12 октября 2019
Статья
Boldyrev K., Маврин Б., Шерин П. et al. Journal of Luminescence. 2018. Vol. 193. P. 119-124.
Добавлено: 8 февраля 2019
Статья
Loganathan N., Bowers G. M., Yazaydin A. O. et al. Journal of Physical Chemistry C. 2018. Vol. 122. No. 8. P. 4391-4402.

In situ XRD and NMR experiments combined with molecular dynamics simulations using the grand canonical ensemble (GCMD) show that cation size, charge and solvation energy play critical roles in determining the interlayer expansion of smectite clay minerals when exposed to dry supercritical CO2 under conditions relevant to the earth’s upper crust, petroleum reservoirs, and geological CO2 sequestration conditions (323 K and 90 bar). The GCMD results show that the smectite mineral, hectorite, containing interlayer alkali and alkaline earth cations with relatively small ionic radii and high solvation and hydration energies (e.g., Li+, Na+ Mg2+, and Ca2+) does not intercalate dry CO2 and that the fully collapsed interlayer structure is the energetically most stable configuration. With increasing cation size and decreasing cation solvation energy, the energy barrier to CO2 intercalation decreases. With K+, Rb+, Cs+, Sr2+, and Ba2+ the monolayer structure is the stable configuration, and CO2 should spontaneously enter the interlayer. With Cs+ there is not even an energy barrier for CO2 intercalation, in agreement with the experimental XRD and NMR results that show clay layer expansion and CO2 incorporation. The number of intercalated CO2 molecules decreases with increasing size of the alkali cation but does not vary with ion size for the alkaline earth cations. 13C NMR spectroscopy and the GCMD simulations show that the average orientation of the intercalated CO2 molecules is with their O-C-O axes parallel to the basal clay surface and that they undergo a combination of rapid rotation about an axis perpendicular to the main molecular axis and wobbling motion with respect to the basal surface. Incorporation of CO2 in the interlayer decreases the coordination of Cs+ by the oxygen atoms of the basal surfaces, which is compensated by CO2 molecules entering their solvation shell, as predicted based on previously published NMR results. The GCMD simulations show that the strength of the interaction between the exchangeable cation and the clay structure dominates the intercalation energetics in dry scCO2. With relatively small cations, the cation-clay interactions outcompete cation solvation by CO2 molecules. The computed residence times for coordination among of interlayer species are consistent with the computed energetics.

Добавлено: 31 мая 2018
Статья
Loganathan N., Bowers G. M., Yazaydin A. O. et al. Journal of Physical Chemistry C. 2018. Vol. 122. No. 41. P. 23460-23469.

The intercalation of H2O, CO2, and other fluid species in expandable clay minerals (smectites) may play a significant role in controlling the behavior of these species in geological C-sequestration and enhanced petroleum production and has been the subject of intensive study in recent years. This paper reports the results of a computational study of the effects of the properties of the charge balancing, exchangeable cations on H2O and CO2 intercalation in the smectite mineral, hectorite, in equilibrium with an H2O-saturated supercritical CO2 fluid under reservoir conditions using Grand Canonical Molecular Dynamics (GCMD) methods. The results show that the intercalation behavior is greatly different with cations with relatively low hydration energies and high affinities for CO2 (here Cs+) than with cations with higher hydration energies (here Ca2+). With Cs+, CO2 intercalation occurs in a 1-layer structure and does not require H2O intercalation, whereas with Ca2+ the presence of a sub-monolayer of H2O is required for CO2 intercalation. The computational results provide detailed structural, dynamical and energetic insight into the differences in intercalation behavior and are in excellent agreement with in situ experimental XRD, IR, quartz crystal microbalance, and NMR results for smectite materials obtained under reservoir conditions.

Добавлено: 20 октября 2018
Статья
Fedorov P., Luginina A., Kuznetsov S. et al. Cellulose. 2019. Vol. 26. P. 2403-2423.
Добавлено: 29 мая 2020
Статья
Kryzhanovskaya N., Moiseev E., Zubov F. et al. Electronics Letters. 2015. Vol. 51. No. 17. P. 1354-1355.
Добавлено: 1 октября 2020
Статья
Kryzhanovskaya N., Mukhin I., Moiseev E. et al. Optics Express. 2014. Vol. 22. No. 21. P. 25782-25787.
Добавлено: 29 сентября 2020
Статья
O.I. Utesov, Syromyatnikov A. V. Journal of Magnetism and Magnetic Materials. 2019. Vol. 475. P. 98-102.
Добавлено: 16 января 2021
Статья
Krasilin A., Danilovich D., Yudina E. et al. Applied Clay Science. 2019. Vol. 173. P. 1-11.
Добавлено: 28 мая 2020
Статья
Makarov A. A., Zelenina I., Zakhidov S. et al. Biology Bulletin. 2018. Vol. 45. No. 2. P. 119-125.
Добавлено: 23 августа 2018
Статья
Kolesnikov A., Budkov Y., Gor G. Y. Journal of Physical Chemistry C. 2020. Vol. 124. No. 37. P. 20046-20054.
Добавлено: 13 августа 2020
Статья
Prikhno I., Safronova E. Y., Stenina I. A. et al. Membranes and Membrane Technologies (Russia). 2020. Vol. 2. No. 4. P. 265-271.
Добавлено: 31 августа 2020
Статья
Elmanov I., Sardi F., Xia K. et al. Journal of Physics: Conference Series. 2020. Vol. 1695.
Добавлено: 2 января 2021
Статья
Belyanin A., Bagdasaryan S., Bagdasaryan A. et al. Materials Science Forum. 2019. Vol. 970. P. 100-106.
Добавлено: 8 ноября 2019