• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 17 публикаций
Сортировка:
по названию
по году
Статья
Shnourkoff P. V., Novikov D. A. Working papers by Cornell University. Series math "arxiv.org". 2018. No. arXiv:1811.10993 [q-fin.GN]. P. 1-15.
Добавлено: 26 февраля 2019
Статья
Bonelli G., Gavrylenko P., Tanzini A. et al. Working papers by Cornell University. Series math "arxiv.org". 2019.
Добавлено: 13 ноября 2019
Статья
Dunin-Barkowski P., Popolitov A., Shadrin S. et al. Working papers by Cornell University. Series math "arxiv.org". 2017. Vol. 1712. No. 08614. P. 1-38.
Добавлено: 2 января 2018
Статья
Gayfullin S., Gaifullin A. A. Working papers by Cornell University. Series math "arxiv.org". 2013.
Добавлено: 15 ноября 2013
Статья
Le Gouic T., Paris Q., Rigollet P. et al. Working papers by Cornell University. Series math "arxiv.org". 2019. P. 1-17.
Добавлено: 14 ноября 2019
Статья
Polyakov N. L. Working papers by Cornell University. Series math "arxiv.org". 2018. P. 1-22.
Добавлено: 9 октября 2018
Статья
Olshanski G. Working papers by Cornell University. Series math "arxiv.org". 2020.
Добавлено: 19 января 2021
Статья
Moulines E., Durmus A., Naumov A. et al. Working papers by Cornell University. Series math "arxiv.org". 2021. No. 2102.00185. P. 1-39.

This paper studies the exponential stability of  random matrix products driven by a general (possibly unbounded) state space Markov chain. It is a  cornerstone in the analysis of stochastic algorithms in machine learning (e.g. for parameter tracking in online-learning or reinforcement learning). The existing results impose strong  conditions  such as uniform boundedness of the matrix-valued functions and uniform ergodicity of the Markov chains.  Our main contribution is an exponential stability result for the p-th moment of random matrix product, provided  that (i) the underlying Markov chain satisfies a super-Lyapunov drift condition, (ii) the growth of the matrix-valued functions is controlled by an appropriately defined function (related to the drift condition). Using this result, we give finite-time p-th moment bounds for constant and decreasing stepsize linear stochastic approximation schemes with Markovian noise on general state space. We illustrate these findings for linear value-function estimation in reinforcement learning. We provide finite-time p-th moment bound for various members of temporal difference (TD) family of algorithms.

Добавлено: 24 февраля 2021
Статья
Nikolai L. Poliakov, Saveliev D. I. Working papers by Cornell University. Series math "arxiv.org". 2018. P. 1-46.
Добавлено: 18 февраля 2019
Статья
P. V. Shnurkov. Working papers by Cornell University. Series math "arxiv.org". 2017. No. 1709.03442v1. P. 1-16.
Добавлено: 13 декабря 2017
Статья
Belomestny D., Moulines E., Naumov A. et al. Working papers by Cornell University. Series math "arxiv.org". 2021. No. 2102.00199.

We undertake a precise study of the non-asymptotic properties of vanilla generative adversarial networks (GANs) and derive theoretical guarantees in the problem of  estimating an unknown $d$-dimensional density $p$  under a proper choice of the class of generators and discriminators. We prove that the resulting  density estimate converges to $p$ in terms of  Jensen-Shannon (JS) divergence at the rate $n^{-2\beta/(2\beta+d)}$ where $n$ is the sample size and $\beta$ determines the smoothness of $p$. This is the first result in the literature on density estimation using vanilla GANs with JS rates faster than $n^{-1/2}$ in the regime $\beta>d/2$.

Добавлено: 24 февраля 2021
Статья
P. V. Shnurkov, K. A. Adamova. Working papers by Cornell University. Series math "arxiv.org". 2019. No. arXiv:1906.05824v1. P. 1-14.
Добавлено: 17 июня 2019
Статья
Paris Q. Working papers by Cornell University. Series math "arxiv.org". 2020. P. 1-17.
Добавлено: 10 февраля 2020
Статья
Durmus A., Moulines E., Naumov A. et al. Working papers by Cornell University. Series math "arxiv.org". 2021.

This paper provides a non-asymptotic analysis of linear stochastic approximation (LSA) algorithms with fixed stepsize. This family of methods arises in many machine learning tasks and is used to obtain approximate solutions of a linear system $\bar{A}\theta = \bar{b}$ for which $\bar{A}$ and $\bar{b}$ can only be accessed through random estimates $\{({\bf A}_n, {\bf b}_n): n \in \mathbb{N}^*\}$.  Our analysis is based on new results regarding moments and high probability bounds for products of matrices which are shown to be tight. We derive high probability bounds on the performance of LSA under weaker conditions on the sequence $\{({\bf A}_n, {\bf b}_n): n \in \mathbb{N}^*\}$ than previous works. However, in contrast, we establish polynomial concentration bounds with order depending on the stepsize. We show that our conclusions cannot be improved  without additional assumptions on the sequence of random matrices $\{{\bf A}_n: n \in \mathbb{N}^*\}$, and in particular that no Gaussian or exponential high probability bounds can hold.  Finally, we pay a particular attention to establishing  bounds with sharp order with respect to the number of iterations and the stepsize and  whose leading terms contain the covariance matrices appearing in the central limit theorems.

Добавлено: 3 июня 2021
Статья
Belomestny D., Levin I., Moulines E. et al. Working papers by Cornell University. Series math "arxiv.org". 2021.

Policy evaluation  is an important instrument  for the comparison of different algorithms in Reinforcement Learning (RL). Yet even a precise knowledge of the value function $V^{\pi}$ corresponding to a policy $\pi$ does not provide reliable information on how far is the  policy $\pi$ from the optimal one. We present a novel model-free upper value iteration procedure ({\sf UVIP}) that allows us to estimate the suboptimality gap $V^{\star}(x) - V^{\pi}(x)$ from above and to construct confidence intervals for \(V^\star\). Our approach  relies on upper bounds to the solution of the Bellman optimality equation via martingale approach. We provide theoretical guarantees for {\sf UVIP} under general assumptions and illustrate its performance on a number of benchmark RL problems.

Добавлено: 3 июня 2021
Статья
Belomestny D., Moulines E., Samsonov S. Working papers by Cornell University. Series math "arxiv.org". 2020.
Добавлено: 31 августа 2020
Статья
Belomestny D., Iosipoi L., Zhivotovskiy N. Working papers by Cornell University. Series math "arxiv.org". 2019.
Добавлено: 22 октября 2018