• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдены 3 публикации
Сортировка:
по названию
по году
Статья
Pianykh O., Ridge C., Litmanovich D. et al. American Journal of Roentgenology. 2012. Vol. 198. No. 5.
Добавлено: 28 января 2013
Статья
Pianykh O. American Journal of Roentgenology. 2012. Vol. 199. No. 3. P. 627-634.

Despite the increasingly broad use of perfusion applications, we still have no generally accessible means for their verification: The common sense of perfusion maps and "bona fides" of perfusion software vendors remain the only grounds for acceptance. Thus, perfusion applications are one of a very few clinical tools considerably lacking practical objective hands-on validation. MATERIALS AND METHODS. To solve this problem, we introduce digital perfusion phantoms (DPPs) - numerically simulated DICOM image sequences specifically designed to have known perfusion maps with simple visual patterns. Processing DPP perfusion sequences with any perfusion algorithm or software of choice and comparing the results with the expected DPP patterns provide a robust and straightforward way to control the quality of perfusion analysis, software, and protocols. RESULTS. The deviations from the expected DPP maps, observed in each perfusion software, provided clear visualization of processing differences and possible perfusion implementation errors. CONCLUSION. Perfusion implementation errors, often hidden behind real-data anatomy and noise, become very visible with DPPs. We strongly recommend using DPPs to verify the quality of perfusion applications.

Добавлено: 28 января 2013
Статья
Pianykh O., Stites M. American Journal of Roentgenology. 2016. Vol. 206. No. 4. P. 797-804.

OBJECTIVE: Despite the long history of digital radiology, one of its most critical aspects-information security-still remains extremely underdeveloped and poorly standardized. To study the current state of radiology security, we explored the worldwide security of medical image archives. MATERIALS AND METHODS: Using the DICOM data-transmitting standard, we implemented a highly parallel application to scan the entire World Wide Web of networked computers and devices, locating open and unprotected radiology servers. We used only legal and radiology-compliant tools. Our security-probing application initiated a standard DICOM handshake to remote computer or device addresses, and then assessed their security posture on the basis of handshake replies. RESULTS: The scan discovered a total of 2774 unprotected radiology or DICOM servers worldwide. Of those, 719 were fully open to patient data communications. Geolocation was used to analyze and rank our findings according to country utilization. As a result, we built maps and world ranking of clinical security, suggesting that even the most radiology-advanced countries have hospitals with serious security gaps. CONCLUSION: Despite more than two decades of active development and implementation, our radiology data still remains insecure. The results provided should be applied to raise awareness and begin an earnest dialogue toward elimination of the problem. The application we designed and the novel scanning approach we developed can be used to identify security breaches and to eliminate them before they are compromised. © American Roentgen Ray Society.

Добавлено: 2 июня 2016