• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 13 публикаций
Сортировка:
по названию
по году
Статья
Koltsov S. Physica A: Statistical Mechanics and its Applications. 2018. Vol. 512. P. 1192-1204.
Добавлено: 11 октября 2018
Статья
Pyrlik V. Physica A: Statistical Mechanics and its Applications. 2013. No. 392. P. 6041-6051.
Добавлено: 14 августа 2013
Статья
Apenko S.M. Physica A: Statistical Mechanics and its Applications. 2014. Vol. 414. P. 108-114.
Добавлено: 23 октября 2014
Статья
Колотев С. В., Малютин А. А., Burovski E. et al. Physica A: Statistical Mechanics and its Applications. 2018. Vol. 499. P. 142-147.
Добавлено: 4 февраля 2018
Статья
Anton Kocheturov, Mikhail Batsyn, Panos M. Pardalos. Physica A: Statistical Mechanics and its Applications. 2014. Vol. 413. P. 523-533.
Добавлено: 24 июля 2014
Статья
Lapinova S. A., Saichev A., Tarakanova M. Physica A: Statistical Mechanics and its Applications. 2013. Vol. 392. No. 6. P. 1439-1451.

We discuss the efficiency of the quadratic bridge volatility estimator in comparison with Parkinson, Garman-Klass and Roger-Satchell estimators. It is shown in particular that point and interval estimations of volatility, resting on the bridge estimator, are considerably more efficient than analogous estimations, resting on the Parkinson, Garman-Klass and Roger-Satchell ones. © 2012 Elsevier B.V. All rights reserved.

Добавлено: 28 марта 2013
Статья
Apenko S.M. Physica A: Statistical Mechanics and its Applications. 2012. Vol. 391. No. 1-2. P. 62-77.
Добавлено: 23 октября 2014
Статья
Kalyagin V.A., Koldanov A.P., Koldanov P.A. et al. Physica A: Statistical Mechanics and its Applications. 2014. Vol. 413. No. 1. P. 59-70.
Добавлено: 19 июля 2014
Статья
Yakushkina T., Saakian D. B. Physica A: Statistical Mechanics and its Applications. 2018. Vol. 507. P. 470-477.
Добавлено: 22 июня 2018
Статья
Shapoval A. Physica A: Statistical Mechanics and its Applications. 2010. Vol. 389. P. 5145-5154.
Добавлено: 13 августа 2014
Статья
Nogovitsyn E., Budkov Yu.A. Physica A: Statistical Mechanics and its Applications. 2012. Vol. 391. P. 2507-2517.
Добавлено: 21 марта 2015
Статья
Shapoval A.B., Shnirman M. Physica A: Statistical Mechanics and its Applications. 2012. Vol. 391. No. 1-2. P. 15-20.
Добавлено: 7 марта 2014
Статья
Malkov A., Zinkina J. V., Korotayev A. Physica A: Statistical Mechanics and its Applications. 2012. Vol. 391. No. 21. P. 5215-5229.

A society is a medium with a complex structure of one-to-one relations between people. Those could be relations between friends, wife-husband relationships, relations between business partners, and so on. At a certain level of analysis, a society can be regarded as a gigantic maze constituted of one-to-one relationships between people. From a physical standpoint it can be considered as a highly porous medium. Such media are widely known for their outstanding properties and effects like self-organized criticality, percolation, power-law distribution of network cluster sizes, etc. In these media supercritical events, referred to as dragon-kings, may occur in two cases: when increasing stress is applied to a system (self-organized criticality scenario) or when increasing conductivity of a system is observed (percolation scenario). In social applications the first scenario is typical for negative effects: crises, wars, revolutions, financial breakdowns, state collapses, etc. The second scenario is more typical for positive effects like emergence of cities, growth of firms, population blow-ups, economic miracles, technology diffusion, social network formation, etc. If both conditions (increasing stress and increasing conductivity) are observed together, then absolutely miraculous dragon-king effects can occur that involve most human society. Historical examples of this effect are the emergence of the Mongol Empire, world religions, World War II, and the explosive proliferation of global internet services. This article describes these two scenarios in detail beginning with an overview of historical dragon-king events and phenomena starting from the early human history till the last decades and concluding with an analysis of their possible near future consequences on our global society. Thus we demonstrate that in social systems dragon-king is not a random outlier unexplainable by power-law statistics, but a natural effect. It is a very large cluster in a porous percolation medium. It occurs as a result of changes in external conditions, such as supercritical load, increase in system elements' sensitivity, or system connectivity growth.

Добавлено: 4 февраля 2013