• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдены 4 публикации
Сортировка:
по названию
по году
Статья
Ding J., Feigin B. L. Representation Theory. 2000. Vol. 4.
Добавлено: 31 мая 2010
Статья
Bezrukavnikov R., Kazhdan D. Representation Theory. 2015.

Geometry of second adjointness for  p-adic groups.

Добавлено: 27 июля 2015
Статья
Cerulli Irelli G., Feigin E., Reineke M. Representation Theory. 2014. No. 18. P. 1-14.
In a previous paper the authors have attached to each Dynkin quiver an associative algebra. The definition is categorical and the algebra is used to construct desingularizations of arbitrary quiver Grassmannians. In the present paper we prove that this algebra is isomorphic to an algebra constructed by Hernandez-Leclerc defined combinatorially and used to describe certain graded Nakajima quiver varieties. This approach is used to get an explicit realization of the orbit closures of representations of Dynkin quivers as affine quotients. - See more at: http://www.ams.org/journals/ert/2014-18-01/S1088-4165-2014-00449-7/home.html#sthash.TNXUywGF.dpuf
Добавлено: 30 апреля 2014
Статья
Feigin E. Representation Theory. 2009. No. 13. P. 165-181.
Добавлено: 15 сентября 2010