• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдены 4 публикации
Сортировка:
по названию
по году
Статья
Paiva V. d., Rodin A. Logica Universalis. 2013. Vol. 7. P. 265-273.

Since our topic is a interdisciplinary subfield of logic, computer science and philosophy we believe that we should as least discuss some questions that the researchers interested in categorical logic might pose themselves. • What do we mean by categorical logic? • What are the boundaries of this subfield? Is it an emergent one? • Which are the important problems in this area? • Why should any one pursue a programme of investigation in this area? • Can we see ways of increasing the interaction between the largely parallel communities (mathematicians, traditional logicians and computer scientists) involved? • Most importantly, what are the trends for the future?

Добавлено: 5 июня 2018
Статья
Makarov I. Logica Universalis. 2015. Vol. 9. No. 1. P. 1-26.

The article deals with finding finite total equivalence systems for formulas based on an arbitrary closed class of functions of several variables defined on the set \{0, 1, 2\} and taking values in the set \{0,1\} with the property that the restrictions of its functions to the set \{0, 1\} constitutes a closed class of Boolean functions. We consider all classes whose restriction closure is either the set of all functions of two-valued logic or the set T a of functions preserving a,a\in\{0,1\} . In each of these cases, we find a finite total equivalence system, construct a canonical type for formulas, and present a complete algorithm for determining whether any two formulas are equivalent.

Добавлено: 28 февраля 2015
Статья
Vasyukov V. L. Logica Universalis. 2007. Vol. 1. No. 2. P. 277-294.
Добавлено: 27 ноября 2014
Статья
Pietarinen A. Logica Universalis. 2019. Vol. 13. P. 241-262.
Добавлено: 16 сентября 2018