• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 5 публикаций
Сортировка:
по названию
по году
Статья
Aleskerov F. T., Demin S., Richman M. et al. International Journal of Information Technology and Decision Making. 2020. Vol. 19. No. 5. P. 1177-1187.
Добавлено: 22 октября 2019
Статья
Aleskerov F. T., Petrushchenko S. International Journal of Information Technology and Decision Making. 2016. Vol. 15. No. 01. P. 5-22.

Data Envelopment Analysis is a well-known non-parametric technique of efficiency eval- uation which is actively used in many economic applications. However, DEA is not very well applicable when a sample consists of firms operating under drastically different con- ditions. We offer a new method of efficiency estimation in heterogeneous samples based on a sequential exclusion of alternatives and standard DEA approach. We show a connec- tion between efficiency scores obtained via standard DEA model and the ones obtained via our algorithm. We also illustrate our model by evaluating 28 Russian universities and compare the results obtained by two techniques.

Добавлено: 14 октября 2015
Статья
Lepskiy A. International Journal of Information Technology and Decision Making. 2018. Vol. 17. No. 1. P. 339-355.
Добавлено: 31 января 2018
Статья
Алескеров Ф. Т. International Journal of Information Technology and Decision Making. 2004. Т. 3. № 2.
Добавлено: 16 февраля 2009
Статья
Aleskerov F. T., Vyacheslav V. Chistyakov. International Journal of Information Technology and Decision Making. 2013. Vol. 12. No. 6. P. 1201-1222.

Based on the leximin and leximax preferences, we consider two threshold preference relations on the set X of alternatives, each of which is characterized by an n-dimensional vector (n is greater than 2) with integer components varying between 1 and m>2. We determine explicitly in terms of binomial coe±cients the unique utility function for each of the two relations, which in addition maps X onto the natural `interval' {1, 2,...,|~X|}, where ~X is the quotient set of X with respect to the indifference relation I on X induced by the threshold preference. This permits us to evaluate all equivalence classes and indifference classes of the threshold order on X, present an algorithm of ordering the monotone representatives of indifference classes, and restore the indifference class of an alternative via its ordinal number with respect to the threshold preference order.

Добавлено: 13 декабря 2013