• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 18 публикаций
Сортировка:
по названию
по году
Статья
Volk D. Discrete and Continuous Dynamical Systems. 2014. Vol. 34. No. 5. P. 2307-2314.

Interval translation maps (ITMs) are a non-invertible generalization of interval exchange transformations (IETs). The dynamics of finite type ITMs is similar to IETs, while infinite type ITMs are known to exhibit new interesting effects. In this paper, we prove the finiteness conjecture for the ITMs of three intervals. Namely, the subset of ITMs of finite type contains an open, dense, and full Lebesgue measure subset of the space of ITMs of three intervals. For this, we show that any ITM of three intervals can be reduced either to a rotation or to a double rotation.

Добавлено: 30 декабря 2015
Статья
Chepyzhov V. V., Conti M., Pata V. Discrete and Continuous Dynamical Systems. 2012. Vol. 32. No. 6. P. 2079-2088.

For a semigroup $S(t):X\to X$ acting on a metric space $(X,\dist)$, we give a notion of global attractor based only on the minimality with respect to the attraction property. Such an attractor is shown to be invariant whenever $S(t)$ is asymptotically closed. As a byproduct, we generalize earlier results on the existence of global attractors in the classical sense.

Добавлено: 22 февраля 2013
Статья
Bonatti C., Minkov S., Alexey Okunev et al. Discrete and Continuous Dynamical Systems. 2020. Vol. 40. No. 1. P. 441-465.
Добавлено: 21 октября 2019
Статья
Kozyakin V., Krasnoselskii A., Rachinskii D. Discrete and Continuous Dynamical Systems. 2008. Vol. 20. No. 4. P. 989-1011.
Добавлено: 19 февраля 2013
Статья
Bogachev V., Shaposhnikov S., Veretennikov A. Discrete and Continuous Dynamical Systems. 2016. Vol. 36. No. 7. P. 3519 -3543.

We obtain sufficient conditions for the differentiability of solutions to stationary Fokker--Planck--Kolmogorov equations with respect to a parameter. In particular, this gives conditions for the differentiability of stationary distributions of diffusion processes with respect to a parameter.

Добавлено: 4 июня 2016
Статья
Schurov I. Discrete and Continuous Dynamical Systems. 2011. Vol. Supplement 2011. P. 1289-1298.
Добавлено: 22 октября 2011
Статья
Kolesnikov A. Discrete and Continuous Dynamical Systems. 2014. Vol. 34. No. 4. P. 1511-1532.
Добавлено: 12 ноября 2013
Статья
Vera Ignatenko. Discrete and Continuous Dynamical Systems. 2018. Vol. 38. No. 7. P. 3637-3661.
Добавлено: 25 мая 2018
Статья
Bekmaganbetov K. A., Chechkin G. A., Chepyzhov V. V. et al. Discrete and Continuous Dynamical Systems. 2017. Vol. 37. No. 5. P. 2375-2393.

We consider the 3D Navier--Stokes systems with randomly rapidly oscillating right--hand sides. Under the assumption that the random functions are ergodic and statistically homogeneous in space variables or in time variables we prove that the trajectory attractors of these systems tend to the trajectory attractors of homogenized 3D Navier--Stokes systems whose right--hand sides are the average of the corresponding terms of the original systems. We do not assume that the Cauchy problem for the considered 3D Navier--Stokes systems is uniquely solvable.

Добавлено: 7 июня 2017
Статья
Kalinin N., Shkolnikov M. Discrete and Continuous Dynamical Systems. 2018. Vol. 38. No. 6. P. 2827-2849.
Добавлено: 17 апреля 2018
Статья
Blokh A., Oversteegen L., Ptacek R. M. et al. Discrete and Continuous Dynamical Systems. 2016. Vol. 36. No. 9. P. 4665-4702.

Polynomials from the closure of the principal hyperbolic domain of the cubic connectedness locus have some specific properties, which were studied in a recent paper by the authors. The family of (affine conjugacy classes of) all polynomials with these properties is called the Main Cubioid. In this paper, we describe a combinatorial counterpart of the Main Cubioid --- the set of invariant laminations that can be associated to polynomials from the Main Cubioid.

Добавлено: 6 июля 2016
Статья
Blokh A., Oversteegen L., Timorin V. Discrete and Continuous Dynamical Systems. 2017. Vol. 37. No. 11. P. 5781-5795.
Добавлено: 16 августа 2017
Статья
Blank M. Discrete and Continuous Dynamical Systems. 2020.
Добавлено: 21 октября 2020
Статья
Krasnosel'skii Alexander M. Discrete and Continuous Dynamical Systems. 2013. Vol. 33. No. 1. P. 239-254.

We present an approach to study degenerate ODE with periodic nonlinearities; for resonant higher order nonlinear equations L(p)x=f(x)+b(t), p=d/dt, with 2pi-periodic forcing b and periodic f we give multiplicity results, in particular, conditions of existence of infinite and unbounded sets of 2pi-periodic solutions.

Добавлено: 11 февраля 2013
Статья
Skripchenko A. Discrete and Continuous Dynamical Systems. 2012. Vol. 32. No. 2. P. 643-656.
Добавлено: 3 марта 2014
Статья
Vladislav Kruglov, Dmitry Malyshev, Olga Pochinka. Discrete and Continuous Dynamical Systems. 2018. Vol. 38. No. 9. P. 4305-4327.
Добавлено: 2 октября 2017
Статья
Chepyzhov V. V., Vishik M. Discrete and Continuous Dynamical Systems. 2010. Vol. 27. No. 4. P. 1493-1509.
Добавлено: 26 февраля 2013
Статья
Abrashkin A. A. Discrete and Continuous Dynamical Systems. 2019. Vol. 39. No. 8. P. 4443-4453.
Добавлено: 19 июня 2019