• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 12 публикаций
Сортировка:
по названию
по году
Статья
Shapoval S., Le Mouël J., Shnirman M. et al. Nonlinear Processes in Geophysics. 2014. Vol. 21. P. 797-813.
Добавлено: 13 августа 2014
Статья
Pelinovsky E., Kurkin A. A., Kurkina O. E. et al. Nonlinear Processes in Geophysics. 2018. Vol. 25. P. 511-519.
Добавлено: 21 октября 2018
Статья
Kartashova E., Talipova T., Pelinovsky E. Nonlinear Processes in Geophysics. 2013. Vol. 20. No. 4. P. 571-580.
Добавлено: 15 октября 2013
Статья
Grimshaw R., Kurkina O. E., Pelinovsky E. Nonlinear Processes in Geophysics. 2002. Vol. 9. P. 221-235.
Добавлено: 27 декабря 2010
Статья
Denissenko P., Pearson J., Диденкулова И. И. et al. Nonlinear Processes in Geophysics. 2011. No. 18 (6). P. 967-975.
Добавлено: 5 января 2012
Статья
Grimshaw R., Pelinovsky E., Talipova T. et al. Nonlinear Processes in Geophysics. 2010. Vol. 17. No. 6. P. 633-649.

О внутренних уединенных волнах: распространение, деформации и разрушения.

Добавлено: 19 ноября 2012
Статья
Abrashkin A. A., Pelinovsky E. Nonlinear Processes in Geophysics. 2017. Vol. 24. P. 255-264.
Добавлено: 26 июня 2017
Статья
Pelinovsky E., Диденкулова И. И. Nonlinear Processes in Geophysics. 2012. No. 19(1). P. 1-8.
Nonlinear effects at the bottom profile of convex shape (non-reflecting beach) are studied using asymptotic approach (nonlinear WKB approximation) and direct perturbation theory. In the asymptotic approach the nonlinearity leads to the generation of high-order harmonics in the propagating wave, which result in the wave breaking when the wave propagates shoreward, while within the perturbation theory besides wave deformation it leads to the variations in the mean sea level and wave reflection (waves do not reflect from “non-reflecting” beach in the linear theory). The nonlinear corrections (second harmonics) are calculated within both approaches and compared between each other. It is shown that for the wave propagating shoreward the nonlinear correction is smaller than the one predicted by the asymptotic approach, while for the offshore propagating wave they have a similar asymptotic. Nonlinear corrections for both waves propagating shoreward and seaward demonstrate the oscillatory character, caused by interference of the incident and reflected waves in the second-order perturbation theory, while there is no reflection in the linear approximation (firstorder perturbation theory). Expressions for wave set-up and set-down along the non-reflecting beach are found and discussed.
Добавлено: 26 ноября 2012
Статья
Ezersky A., Abcha N., Pelinovsky E. Nonlinear Processes in Geophysics. 2013. Vol. 20. No. 1. P. 35-40.
Добавлено: 24 января 2013
Статья
Pelinovsky E., Talipova T., Slunyaev A. et al. Nonlinear Processes in Geophysics. 2007. No. 14. P. 1-10.
Добавлено: 27 декабря 2010
Статья
Abcha N., Zhang T., Ezersky A. et al. Nonlinear Processes in Geophysics. 2017. No. 24. P. 157-165.

Parametric excitation of edge waves with a frequency 2 times less than the frequency of surface waves propagating perpendicular to the inclined bottom is investigated in laboratory experiments. The domain of instability on the plane of surface wave parameters (amplitude-frequency) is found. The subcritical instability is observed in the system of parametrically excited edge waves. It is shown that breaking of surface waves initiates turbulent effects and can suppress the parametric generation of edge waves. 

Добавлено: 19 мая 2017
Статья
Grimshaw R., Maderich V., Талипова Т. Г. et al. Nonlinear Processes in Geophysics. 2009. No. 16. P. 33-42.
Добавлено: 19 марта 2011