• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 9 публикаций
Сортировка:
по названию
по году
Статья
Zhang B., Guan X., Pardalos P. M. et al. Journal of Optimization Theory and Applications. 2018. P. 1-22.
Добавлено: 4 февраля 2018
Статья
A.Y. Golubin. Journal of Optimization Theory and Applications. 2015. Vol. 166. No. 3. P. 791-803.
Добавлено: 11 августа 2015
Статья
Bykadorov I., Ellero A., Funari S. et al. Journal of Optimization Theory and Applications. 2009. Vol. 142. No. 1. P. 55-66.

We consider optimal control problems with functional given by the ratio of two integrals (fractional optimal control problems). In particular, we focus on a special case with affine integrands and linear dynamics with respect to state and control. Since the standard optimal control theory cannot be used directly to solve a problem of this kind, we apply Dinkelbach’s approach to linearize it. Indeed, the fractional optimal control problem can be transformed into an equivalent monoparametric family {Pq} of linear optimal control problems. The special structure of the class of problems considered allows solving the fractional problem either explicitly or requiring straightforward classical numerical techniques to solve a single equation. An application to advertising efficiency maximization is presented.

Добавлено: 18 ноября 2013
Статья
Bulavsky V. A., Kalashnikov V. Journal of Optimization Theory and Applications. 2012. Vol. 152. No. 1. P. 152-170.
Добавлено: 11 ноября 2012
Статья
Liu H., Fana N., Pardalos P. M. Journal of Optimization Theory and Applications. 2012. Vol. 154. No. 2. P. 370-381.
С помощью построения обобщенной функции Лагранжа для класса многоцелевых задач фракционного оптимального управления устанавливаются необходимые и обоснованные условия для существования обобщенных слабых пунктов. Кроме того, описываются отношения между слабой продуктивностью и слабыми обобщенными пунктами.
Добавлено: 9 января 2013
Статья
Petrosian O., Барабанов А. Е. Journal of Optimization Theory and Applications. 2017. Vol. 172. No. 1. P. 328-347.
Добавлено: 24 ноября 2017
Статья
Romanov I., Shamaev A. Journal of Optimization Theory and Applications. 2016. Vol. 170. No. 3. P. 772-782.

In this paper, we examine the controllability problem of a distributed system governed by the two-dimensional Gurtin–Pipkin equation. We consider a system with compactly supported distributed control and show that if the memory kernel is a twice continuously differentiable function, such that its Laplace transformation has at least one root, then the system cannot be driven to equilibrium in finite time.

Добавлено: 1 июля 2016
Статья
Nesterov Y., Shikhman V. Journal of Optimization Theory and Applications. 2014. Vol. 165. No. 3. P. 917-940.

In this paper, we develop new subgradient methods for solving nonsmooth convex optimization problems. These methods guarantee the best possible rate of convergence for the whole sequence of test points. Our methods are applicable as efficient real-time stabilization tools for potential systems with infinite horizon. Preliminary numerical experiments confirm a high efficiency of the new schemes.

Добавлено: 28 января 2016
Статья
Chistyakov V., Pardalos P. M. Journal of Optimization Theory and Applications. 2015. Vol. 167. No. 2. P. 585-616.

This paper addresses the tolerance approach to the sensitivity analysis of optimal solutions to a nonlinear optimization problem of the form: minimize the total cost of a trajectory over all admissible discrete trajectories, where the total cost is expressed through individual costs by means of a generalized addition operation on the set of all non-negative or positive reals. We evaluate and present sharp estimates for upper and lower bounds of costs, for which an optimal solution to the above problem remains stable. These bounds present new results in the sensitivity analysis, as well as extend in a unified way most known results. We define an invariant of the optimization problem—the tolerance function, which is independent of optimal solutions, and establish its basic properties, among which are a characterization of the set of all optimal solutions, the uniqueness of an optimal solution, and extremal values of the tolerance function on an optimal solution.

Добавлено: 17 февраля 2015