• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдены 183 публикации
Сортировка:
по названию
по году
Статья
Andrianov E. S., Zyablovsky A. A., Dorofeenko A. V. et al. Physical Review B: Condensed Matter and Materials Physics. 2018. Vol. 98. No. 07-5411. P. 075411-1-075411-8.
Добавлено: 22 октября 2018
Статья
Rodionov Yaroslav I. Physical Review B: Condensed Matter and Materials Physics. 2018. P. 081114-1-081114-6.
Добавлено: 8 февраля 2019
Статья
S.S. Vergeles, Sarychev A., Tartakovsky G. Physical Review B: Condensed Matter and Materials Physics. 2017. Vol. 95. No. 085401. P. 085401-1-085401-11.
Добавлено: 8 февраля 2018
Статья
Семенякин Н. С., Falkovich G. Physical Review B: Condensed Matter and Materials Physics. 2018. Vol. 97. No. 085127. P. 085127-1-085127-5.
Добавлено: 4 апреля 2018
Статья
Tikhonov K., Mirlin A. D., Skvortsov M. A. Physical Review B: Condensed Matter and Materials Physics. 2016. Vol. 94. P. 220203-1-220203-6.
Добавлено: 9 марта 2017
Статья
Ozaeta A., Vasenko A.S., Hekking F. et al. Physical Review B: Condensed Matter and Materials Physics. 2012. Vol. 86. P. 060509-1-060509-5.
Добавлено: 28 сентября 2015
Статья
Yu. E. Lozovik, I. L. K., Pavel A. V. Physical Review B: Condensed Matter and Materials Physics. 2017. Vol. 95. No. 24-5430. P. 245430-1-245430-19.
Добавлено: 22 октября 2017
Статья
P. A. Ioselevich, M. V. Feigelman Physical Review B - Condensed Matter and Materials Physics. 2011. № 106. С. 077003.
Добавлено: 20 октября 2016
Статья
Kats E., Lebedev V. Physical Review B: Condensed Matter and Materials Physics. 2014. Vol. 89. P. 125433-1-125433-7.

We investigate the effects of quantum (zero-temperature) long-wavelength fluctuations of free-standing crystalline membranes, which are two-dimensional objects embedded into three-dimensional space. The fluctuations produce logarithmic renormalization of elasticity and bending moduli of the membranes. We find one-loop RG equations to demonstrate that the system is in the “asymptotic freedom” regime; that is, the quantum

fluctuations destabilize the flat membrane phase.

Добавлено: 27 октября 2016
Статья
Burmistrov I., Ludwig T., Gefen Y. et al. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 99. No. 045429. P. 045429-1-045429-16.

.

Добавлено: 10 июня 2019
Статья
W. Y. Cordoba-Camacho, da Silva R. M., Vagov A. et al. Physical Review B: Condensed Matter and Materials Physics. 2016. Vol. 94. No. 054511. P. 1-5.
Добавлено: 13 ноября 2018
Статья
Ya. I. Rodionov, Burmistrov I. Physical Review B: Condensed Matter and Materials Physics. 2015. Vol. 92. No. 19. P. 195412-11.
Добавлено: 11 февраля 2019
Статья
Ioselevich A., Sivak V. Physical Review B: Condensed Matter and Materials Physics. 2015. Vol. 92. P. 224203-1-224203-16.
Добавлено: 19 октября 2016
Статья
Sluchanko N., Khoroshilov A., Anisimov M. et al. Physical Review B: Condensed Matter and Materials Physics. 2015. Vol. 91. P. 235104-1-235104-15.

The magnetoresistance (MR) ρ/ρ of the cage-glass compound HoxLu1−xB12 with various concentrations of magnetic holmium ions (x  0.5) has been studied in detail concurrently with magnetization M(T) and Hall effect investigations on high-quality single crystals at temperatures 1.9–120 K and in magnetic field up to 80 kOe. The undertaken analysis of ρ/ρ allows us to conclude that the large negative magnetoresistance (nMR) observed in the vicinity of the N´eel temperature is caused by scattering of charge carriers on magnetic clusters of Ho3+ ions, and that these nanosize regions with antiferromagnetic (AF) exchange inside may be considered as short-range-order AF domains. It was shown that the Yosida relation −ρ/ρ ∼ M2 provides an adequate description of the nMR effect for the case of Langevin-type behavior of magnetization. Moreover, a reduction of Ho-ion effective magnetic moments in the range 3–9 μB was found to develop both with temperature lowering and under the increase of holmium content. A phenomenological description of the large positive quadratic contribution ρ/ρ ∼ μ2 DH2 which dominates in HoxLu1−xB12 in the intermediate temperature range 20–120 K allows us to estimate the drift mobility exponential changes μD ∼ T −α with α = 1.3–1.6 depending on Ho concentration. An even more comprehensive behavior of magnetoresistance has been found in the AF state of HoxLu1−xB12 where an additional linear positive component was observed and attributed to charge-carrier scattering on the spin density wave (SDW). High-precision measurements of ρ/ρ = f (H,T ) have allowed us also to reconstruct the magnetic H-T phase diagram of Ho0.5Lu0.5B12 and to resolve its magnetic structure as a superposition of 4f (based on localized moments) and 5d (based on SDW) components.

Добавлено: 10 марта 2016
Статья
V. Kleptsyn, Schurov I., A. Okunev et al. Physical Review B: Condensed Matter and Materials Physics. 2015. Vol. 92. No. 16. P. 165407.
Добавлено: 13 октября 2015
Статья
Pudalov V.M., Gerasimenko Y. A., Sanduleanu S. V. et al. Physical Review B: Condensed Matter and Materials Physics. 2014. Vol. 89. No. 5. P. 054518-1-054518-10.
Добавлено: 14 марта 2016
Статья
Peltonen J., Peng Z., Korneeva Y. et al. Physical Review B: Condensed Matter and Materials Physics. 2016. Vol. 94. No. 18. P. 180508-1-180508-5.
Добавлено: 2 февраля 2017
Статья
Peltonen J., Astafiev O., Korneeva Y. et al. Physical Review B: Condensed Matter and Materials Physics. 2013. Vol. 88. P. 220506-1-220506-5.
Добавлено: 13 марта 2014
Статья
Boldyrev K., Мельников А., Селиванов Ю. et al. Physical Review B: Condensed Matter and Materials Physics. 2018. Vol. 97. No. 21. P. 214304-1-214304-10.
Добавлено: 8 февраля 2019
Статья
Melnikov A. A., Boldyrev K. N., Selivanov Y. G. et al. Physical Review B: Condensed Matter and Materials Physics. 2018. Vol. 97. No. 21. P. 214304-1-214304-10.
Добавлено: 31 октября 2018
Статья
Shtyk A., Feigelman M. Physical Review B: Condensed Matter and Materials Physics. 2017. Vol. 96. P. 064523-1-064523-8.
Добавлено: 30 ноября 2017