• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдены 24 публикации
Сортировка:
по названию
по году
Статья
Arzhantsev I., Timashev D. Transformation Groups. 2001. Vol. 6. No. 2. P. 101-110.
Добавлено: 8 июля 2014
Статья
Loktev S., Rybnikov L. G., Oblomkov A. et al. Transformation Groups. 2008. Vol. 13. No. 3. P. 541-556.
Добавлено: 4 октября 2010
Статья
Kuwabara T. Transformation Groups. 2015. Vol. 20. No. 2. P. 437-461 .

We study algebras constructed by quantum Hamiltonian reduction associated with symplectic quotients of symplectic vector spaces, including deformed preprojective algebras, symplectic reection algebras (rational Cherednik algebras), and quantization of hypertoric varieties introduced by Musson and Van den Bergh in [MVdB]. We determine BRST cohomologies associated with these quantum Hamiltonian reductions. To compute these BRST cohomologies, we make use of the method of deformation quantization (DQ-algebras) and F-action studied by Kashiwara and Rouquier in [KR], and Gordon and Losev in [GL].

Добавлено: 24 июня 2015
Статья
Khoroshkin A. Transformation Groups. 2016. Vol. 21. No. 2. P. 479-518.
Добавлено: 28 ноября 2016
Статья
Khoroshkin A. Transformation Groups. 2015. P. 1-40.
Добавлено: 9 апреля 2015
Статья
Khoroshkin S. M., Nazarov M. Transformation Groups. 2018. Vol. 23. No. 1. P. 119-147.
Добавлено: 1 августа 2018
Статья
Mukhin E., Feigin B. L., Loktev S. et al. Transformation Groups. 2001. Vol. 6. No. 1. P. 25-52.

We consider two types of quotients of the integrable modules of sl<sub>2</sub><sup>&and;</sup>. These spaces of coinvariants have dimensions described in terms of the Verlinde algebra of level k. We describe monomial bases for the spaces of coinvariants, which leads to a fermionic description of these spaces. For k=1, we give the explicit formulas for the characters. We also present recursion relations satisfied by the characters and the monomial bases.

Добавлено: 8 октября 2010
Статья
Feigin B. L., Kedem R., Loktev S. et al. Transformation Groups. 2001. Vol. 6. No. 1. P. 25-52.
Добавлено: 31 мая 2010
Статья
V. L. Popov. Transformation Groups. 2011. Vol. 16. No. 3. P. 827-856.
Добавлено: 16 марта 2013
Статья
Kiritchenko Valentina, Krishna A. Transformation Groups. 2013. Vol. 18. No. 2. P. 391-413.

We obtain an explicit presentation for the equivariant cobordism ring of a complete flag variety. An immediate corollary is a Borel presentation for the ordinary cobordism ring. Another application is an equivariant Schubert calculus in cobordism. We also describe the rational equivariant cobordism rings of wonderful symmetric varieties of minimal rank.

Добавлено: 18 февраля 2013
Статья
Feigin E., Fourier G., Littelmann P. Transformation Groups. 2017. Vol. 22. No. 2. P. 321-352.
Добавлено: 4 августа 2017
Статья
Braverman A., Finkelberg M. V. Transformation Groups. 2005. Vol. 10. No. 3-4. P. 1-23.
Добавлено: 11 июня 2010
Статья
Kishimoto T., Yuri Prokhorov, Zaidenberg M. Transformation Groups. 2013. Vol. 18. No. 4. P. 1137-1153.

We give a criterion of existence of a unipotent group action on the affine cone over a projective variety or, more generally, on the affine quasicone over a variety which is projective over another affine variety.

Добавлено: 10 октября 2013
Статья
Glutsyuk A. Transformation Groups. 2011. Vol. 16. No. 2. P. 413-479.
Добавлено: 26 февраля 2013
Статья
Vladimir L. Popov. Transformation Groups. 2008. Vol. 13. No. 3--4. P. 819-837.
Добавлено: 16 марта 2013
Статья
Valentina Kiritchenko. Transformation Groups. 2017. Vol. 22. No. 2. P. 387-402.
Добавлено: 25 февраля 2016
Статья
Vladimir L. Popov. Transformation Groups. 2014. Vol. 19. No. 2. P. 549-568.

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given.

Добавлено: 17 марта 2014
Статья
Roman Avdeev, Cupit-Foutou S. Transformation Groups. 2018. Vol. 23. No. 2. P. 299-327.
Добавлено: 17 октября 2017
Статья
Feigin E., Fourier G., Littelmann P. Transformation Groups. 2011. Vol. 16. No. 1. P. 71-89.
Добавлено: 19 декабря 2012
Статья
Trepalin A. Transformation Groups. 2016. Vol. 21. No. 1. P. 275-295.

Let k be an arbitrary field of characteristic zero. In this paper we study quotients of k-rational conic bundles over P 1 k by finite groups of automorphisms. We construct smooth minimal models for such quotients. We show that any quotient is birationally equivalent to a quotient of other k-rational conic bundle cyclic group C2 k of order 2k , dihedral group D2 k of order 2k , alternating group A4 of degree 4, symmetric group S4 of degree 4 or alternating group A5 of degree 5 effectively acting on the base of the conic bundle. Also we construct infinitely many examples of such quotients which are not k-birationally equivalent to each other.

Добавлено: 26 марта 2015
Статья
Kac V. G., Rudakov A. N. Transformation Groups. 2002. Vol. 7. No. 1. P. 67-86.
Добавлено: 22 июня 2010
1 2