Взаимосвязь между кластерными интегрируемыми системами и q-разностными уравнениями выводится за рамки случая Пенлеве. Рассматривается класс гиперэллиптических кривых, для которых многоугольники Ньютона имеют четыре граничные точки. Представлены соответствующие им кластерные интегрируемые системы Тоды. Дискретные автоморфизмы этих систем отождествляются с некоторыми редукциями разностных уравнений Хироты. Построены неавтономные версии этих уравнений. Обнаружено, что их решения выражаются через пятимерные функции Некрасова, содержащие вклады членов Черна–Саймонса, в то время как в автономном случае эти уравнения решаются с помощью тета-функций Римана.
Показано, что дискретная КП иерархия и её строгая версия могут быть расширены до деформаций более широкого класса с большим набором уравнений Лакса. Для построенных обобщений рассмотрены соответствующие линейные задачи и описана еометрическая конструкция решений.
We investigate the connection between the models of topological conformal theory and noncritical string theory with Saito Frobenius manifolds. For this, we propose a new direct way to calculate the flat coordinates using the integral representation for solutions of the Gauss–Manin system connected with a given Saito Frobenius manifold. We present explicit calculations in the case of a singularity of type An. We also discuss a possible generalization of our proposed approach to SU(N)k/(SU(N)k+1 × U(1)) Kazama–Suzuki theories. We prove a theorem that the potential connected with these models is an isolated singularity, which is a condition for the Frobenius manifold structure to emerge on its deformation manifold. This fact allows using the Dijkgraaf–Verlinde–Verlinde approach to solve similar Kazama–Suzuki models.
We consider the theory of multicomponent free massless fermions in two dimensions and use it to construct representations of W-algebras at integer Virasoro central charges. We define the vertex operators in this theory in terms of solutions of the corresponding isomonodromy problem. We use this construction to obtain some new insights into tau functions of the multicomponent Toda-type hierarchies for the class of solutions given by the isomonodromy vertex operators and to obtain a useful representation for tau functions of isomonodromic deformations.
We construct twisted Calogero–Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D’Hoker–Phong and Bordner–Corrigan–Sasaki–Takasaki systems. In addition, we construct the corresponding twisted classical dynamical r-matrices and the Knizhnik–Zamolodchikov–Bernard equations related to the automorphisms of Lie algebras.
Let E 0 be a holomorphic vector bundle over P1(C) and †0 be a meromorphic connection of E 0. We introduce the notion of an integrable connection that describes the movement of the poles of †0 in the complex plane with integrability preserved. We show the that such a deformation exists under sufficiently weak conditions on the deformation space. We also show that if the vector bundle E0 is trivial, then the solutions of the corresponding nonlinear equations extend meromorphically to the deformation space.