• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 10 публикаций
Сортировка:
по названию
по году
Статья
Lebedev M., Krukoff M., Zhuang K. et al. Journal of Neurophysiology. 2017. Vol. 118. No. 3. P. 1800-1808.
Добавлено: 11 декабря 2018
Статья
Morozova E., Myroshnychenko M., di Volo M. et al. Journal of Neurophysiology. 2016. Vol. 116. No. 4. P. 1900-1923.
Добавлено: 4 октября 2018
Статья
Nicol R., Chapman S., Vertes P. et al. Journal of Neurophysiology. 2012. Vol. 107. No. 5. P. 1421-1430.

How do human brain networks react to dynamic changes in the sensory environment? We measured rapid changes in brain network organization in response to brief, discrete, salient auditory stimuli. We estimated network topology and distance parameters in the immediate central response period, <1 s following auditory presentation of standard tones interspersed with occasional deviant tones in a mismatch-negativity (MMN) paradigm, using magnetoencephalography (MEG) to measure synchronization of high-frequency (gamma band; 33-64 Hz) oscillations in healthy volunteers. We found that global small-world parameters of the networks were conserved between the standard and deviant stimuli. However, surprising or unexpected auditory changes were associated with local changes in clustering of connections between temporal and frontal cortical areas and with increased interlobar, long-distance synchronization during the 120- to 250-ms epoch (coinciding with the MMN-evoked response). Network analysis of human MEG data can resolve fast local topological reconfiguration and more long-range synchronization of high-frequency networks as a systems-level representation of the brain's immediate response to salient stimuli in the dynamically changing sensory environment.

Добавлено: 23 октября 2014
Статья
Feurra M., Galli G., Pavone E. F. et al. Journal of Neurophysiology. 2016. P. 153-158.
Добавлено: 4 мая 2016
Статья
Schönwiesner M., Nikolai Novitski, Pakarinen S. et al. Journal of Neurophysiology. 2007. Vol. 97. P. 2075-2082.
Добавлено: 10 июля 2015
Статья
Gutkin B., Canavier C., Evans R. et al. Journal of Neurophysiology. 2016.
Добавлено: 12 октября 2016
Статья
Mirabella G., Lebedev M. Journal of Neurophysiology. 2017. Vol. 117. No. 3. P. 1305-1319.
Добавлено: 11 декабря 2018
Статья
Gutkin B., Maex R. Journal of Neurophysiology. 2017. Vol. 118. No. 1. P. 471-485.

Inhibitory interneurons interconnected via electrical and chemical (GABAA receptor) synapses form extensive circuits in several brain regions. They are thought to be involved in timing and synchronization through fast feedforward control of principal neurons. Theoretical studies have shown, however, that whereas self-inhibition does indeed reduce response duration, lateral inhibition, in contrast, may generate slow response components through a process of gradual disinhibition. Here we simulated a circuit of interneurons (stellate and basket cells) of the molecular layer of the cerebellar cortex and observed circuit time constants that could rise, depending on parameter values, to >1 s. The integration time scaled both with the strength of inhibition, vanishing completely when inhibition was blocked, and with the average connection distance, which determined the balance between lateral and self-inhibition. Electrical synapses could further enhance the integration time by limiting heterogeneity among the interneurons and by introducing a slow capacitive current. The model can explain several observations, such as the slow time course of OFF-beam inhibition, the phase lag of interneurons during vestibular rotation, or the phase lead of Purkinje cells. Interestingly, the interneuron spike trains displayed power that scaled approximately as 1/f at low frequencies. In conclusion, stellate and basket cells in cerebellar cortex, and interneuron circuits in general, may not only provide fast inhibition to principal cells but also act as temporal integrators that build a very short-term memory.

Добавлено: 16 октября 2017
Статья
Sawada T., Petrov A. A. Journal of Neurophysiology. 2017. Vol. 118. P. 3051-3091.
Добавлено: 29 сентября 2017
Статья
Kristjansson A. Journal of Neurophysiology. 2019. Vol. 122. No. 4. P. 1810-1820.
Добавлено: 30 мая 2020