Working paper
Exceptional collections of line bundles on the Beauville surface
Let $A$ be an abelian surface over a finite field $k$. The $k$-isogeny class of $A$ is uniquely determined by a Weil polynomial $f_A$ of degree 4. We give a classification of the groups of $k$-rational points on varieties from this class in terms of $f_A$.
Toric geometry exhibited a profound relation between algebra and topology on one side and combinatorics and convex geometry on the other side. In the last decades, the interplay between algebraic and convex geometry has been explored and used successfully in a much more general setting: first, for varieties with an algebraic group action (such as spherical varieties) and recently for all algebraic varieties (construction of Newton-Okounkov bodies). The main goal of the conference is to survey recent developments in these directions. Main topics of the conference are: Theory of Newton polytopes and Newton-Okounkov bodies; Toric geometry, geometry of spherical varieties, Schubert calculus, geometry of moduli spaces; Tropical geometry and convex geometry; Real algebraic geometry and fewnomial theory; Polynomial vector fields and the Hilbert 16th problem.
A review of the classical construction of Witt vectors is presented, and some recent generalizations of it to the non-commutative case are described.
Comprising three volumes, this offers a multi-faceted survey of a rapidly developing subject aimed not just at specialists but at a broad community of producers of algebraic geometry, and even at some consumers from cognate areas. The thirty-five articles in the Handbook, written by fifty leading experts, cover nearly the entire range of the field. This is the second of the three volumes and is also available as part of a three volume set.
Using the notion of isoclinism introduced by P. Hall for finite p-groups, we show that many important classes of finite p-groups have stable cohomology detected by abelian subgroups (see Theorem 11). Moreover, we show that the stable cohomology of the n-fold wreath product Gn=Z/p≀…≀Z/p of cyclic groups Z/p is detected by elementary abelian p-subgroups and we describe the resulting cohomology algebra explicitly. Some applications to the computation of unramified and stable cohomology of finite groups of Lie type are given.
In this paper a method of constructing a semiorthogonal decomposition of the derived category of G-equivariant sheaves on a variety X is described, provided that the derived category of sheaves on X admits a semiorthogonal decomposition, whose components are preserved by the action of the group G on X. Using this method, semiorthogonal decompositions of equivariant derived categories were obtained for projective bundles and for blow-ups with a smooth center, and also for varieties with a full exceptional collection, preserved by the action of the group. As a main technical instrument, descent theory for derived categories is used.
I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables
We prove a simple homological expression for the homology of a connected spectrum represented by an infinite loop space via the Segal machine. The expression is essentially due to Pirashvili but not stated explicitly in his work; we give an independent proof.
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.
We define and study the Hochschild (co)homology of the second kind (known also as the Borel-Moore Hochschild homology and the compactly supported Hochschild cohomology) for curved DG categories. An isomorphism between the Hochschild (co)homology of the second kind of a CDG-category B and the same of the DG category C of right CDG-modules over B, projective and finitely generated as graded B-modules, is constructed. Sufficient conditions for an isomorphism of the two kinds of Hochschild (co)homology of a DG-category are formulated in terms of the two kinds of derived categories of DG-modules over it. In particular, a kind of “resolution of the diagonal” condition for the diagonal CDG-bimodule B over a CDG-category B guarantees an isomorphism of the two kinds of Hochschild (co)homology of the corresponding DG-category C. Several classes of examples are discussed. In particular, we show that the two kinds of Hochschild (co)homology are isomorphic for the DG-category of matrix factorizations of a regular function on a smooth affine variety over a perfect field provided that the function has no other critical values but zero.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.