### ?

## Smooth l-Fano weighted complete intersections

Cornell University
,
2022.

In this paper we prove that for n-dimensional smooth l-Fano well formed weighted complete intersections, which is not isomorphic to a usual projective space, the upper bound for l is equal to ⌈log2(n+2)⌉−1. We also prove that the only l-Fano of dimension n among such manifolds with inequalities ⌈log3(n+2)⌉⩽l⩽⌈log2(n+2)⌉−1 is a complete intersection of quadrics in a usual projective space.

Przyjalkowski V., Shramov K., Communications in Number Theory and Physics 2020 Vol. 14 No. 3 P. 511-553

We prove that if a smooth variety with non-positive canonical class can be embedded into a weighted projective space of dimension n as a well formed complete intersection and it is not an intersection with a linear cone therein, then the weights of the weighted projective space do not exceed n+1. Based on this bound ...

Added: October 13, 2020

Shramov K., Przyjalkowski V., / Cornell University. Series arXiv "math". 2020.

We show that every reductive subgroup of the automorphism group of a quasi-smooth well formed weighted complete intersection is a restriction of a subgroup in the automorphism group in the ambient weighted projective space. Also, we provide examples demonstrating that an automorphism group of a quasi-smooth well formed Fano weighted complete intersection may be infinite ...

Added: August 19, 2020

Kishimoto T., Yuri Prokhorov, Zaidenberg M., Osaka Journal of Mathematics 2014 Vol. 51 No. 4 P. 1093-1113

We address the following question: When an affine cone over a smooth Fano threefold admits an effective action of the additive group? In this paper we deal with Fano threefolds of index 1 and Picard number 1. Our approach is based on a geometric criterion from our previous paper, which relates the existence of an ...

Added: October 10, 2013

Cheltsov I., Dubouloz A., Park J., Compositio Mathematica 2018 Vol. 154 No. 11 P. 2462-2484

We study a wide class of affine varieties, which we call affine Fano varieties. By analogy with birationally super-rigid Fano varieties, we define super-rigidity for affine Fano varieties, and provide many examples and non-examples of super-rigid affine Fano varieties. ...

Added: October 17, 2018

Prokhorov Y., Advances in Geometry 2013 Vol. 13 No. 3 P. 419-434

We classify Fano threefolds with only Gorenstein terminal singularities and Picard
number greater than 1, satisfying the additional assumption that the G-invariant part of the Weil
divisor class group is of rank 1 with respect to an action of some group G. ...

Added: October 7, 2013

Shramov K., Przyjalkowski V., / Cornell University. Series math "arxiv.org". 2018.

We give lower bounds for Hodge numbers of smooth well formed Fano weighted complete intersections. In particular, we compute their Hodge complexity, that is, the maximal distance between non-trivial Hodge numbers. This allows us to classify varieties of such type whose Hodge numbers are like that of a projective space, of a curve, or of ...

Added: October 21, 2018

Cheltsov I., Zhang K., European Journal of Mathematics 2019 Vol. 5 P. 729-762

We prove that 𝛿δ-invariants of smooth cubic surfaces are at least 6/5. ...

Added: May 10, 2020

Shramov K., Przyjalkowski V., Proceedings of the Steklov Institute of Mathematics 2019 Vol. 307 P. 198-209

We show that smooth well-formed weighted complete intersections have finite automorphism groups, with several obvious exceptions. ...

Added: August 12, 2020

Prokhorov Y., Zaidenberg M., European Journal of Mathematics 2018 Vol. 4 No. 3 P. 1197-1263

It is known that the moduli space of smooth Fano–Mukai fourfolds V18 of genus 10 has dimension one. We show that any such fourfold is a completion of ℂ4 in two different ways. Up to isomorphism, there is a unique fourfold Vs18 acted upon by SL2(ℂ). The group Open image in new window is a ...

Added: September 6, 2018

Shramov K., Przyjalkowski V., / Cornell University. Series arXiv "math". 2019.

We classify smooth Fano weighted complete intersections of large codimension. ...

Added: November 19, 2019

Cheltsov Ivan, Shramov Constantin, Experimental Mathematics 2013 Vol. 22 No. 3 P. 313-326

We study del Pezzo surfaces that are quasismooth and well-formed weighted hypersurfaces. In particular, we find all such surfaces whose α-invariant of Tian is greater than 2/3. ...

Added: January 27, 2014

Yuri Prokhorov, Documenta Mathematica 2010 Vol. 15 P. 843-872

We study Q-Fano threefolds of large Fano index. In
particular, we prove that the maximum possible Fano index is attained
only by the weighted projective space P(3,4,5,7). ...

Added: December 6, 2013

Prokhorov Y., Springer Proceedings in Mathematics & Statistics 2014 Vol. 79 P. 215-229

We give a sharp bound for orders of elementary abelian 2-groups of birational automorphisms of rationally connected threefolds. ...

Added: January 24, 2014

Prokhorov Y., Sbornik Mathematics 2013 Vol. 204 No. 3 P. 347-382

We classify $\mathbb Q$-Fano threefolds of Fano index > 2 and sufficiently big degree. ...

Added: October 7, 2013

Cheltsov Ivan, Park J., Won J., Mathematische Zeitschrift 2014 No. 276 P. 51-79

We study log canonical thresholds on quartic threefolds, quintic fourfolds, and double spaces. As an important application, we show that they have Kähler–Einstein metrics if they are general. ...

Added: November 14, 2013

Aleksei Golota, / Cornell University. Series arXiv "math". 2019.

For a polarized variety (X,L) and a closed connected subgroup G⊂Aut(X,L) we define a G-invariant version of the δ-threshold. We prove that for a Fano variety (X,−KX) and a connected subgroup G⊂Aut(X) this invariant characterizes G-equivariant uniform K-stability. We also use this invariant to investigate G-equivariant K-stability of some Fano varieties with large groups of ...

Added: October 7, 2019

Prokhorov Y., / Cornell University. Series arXiv "math". 2015. No. 1508.04371.

We study singular Fano threefolds of type V22. ...

Added: October 9, 2015

Ю. Г. Прохоров, Известия РАН. Серия математическая 2013 Т. 77 № 3 С. 199-222

We study elements $\tau$ of order two in the birational automorphism groups of rationally connected three-dimensional algebraic varieties such that there exists a non-uniruled divisorial component of the $\tau$-fixed point locus. Using the equivariant minimal model program, we give a rough classification of such elements. ...

Added: July 1, 2013

Prokhorov Y., Advances in Geometry 2013 Vol. 13 No. 3 P. 389-418

We classify Fano threefolds with only terminal singularities whose canonical class is
Cartier and divisible by 2 with the additional assumption that the G-invariant part of the Weil divisor
class group is of rank 1 with respect to an action of some group G. In particular, we find a lot of
examples of Fano 3-folds with “many” symmetries. ...

Added: October 7, 2013

Loginov K., / Cornell University. Series arXiv "math". 2019.

Consider a family of Fano varieties π:X⟶B∋o over a curve germ with a smooth total space X. Assume that the generic fiber is smooth and the special fiber F=π^{−1}(o) has simple normal crossings. Then F is called a semistable degeneration of Fano varieties. We show that the dual complex of F is a simplex of dimension ≤dim F. Simplices of any admissible dimension can be realized ...

Added: October 11, 2019

Ovcharenko M., / Cornell University. Series math "arxiv.org". 2020.

We study smooth Fano weighted complete intersections with respect to the new invariant -- the variance var(X) = coindex(X) - codim(X). ...

Added: June 12, 2020

Prokhorov Y., Cheltsov I., Zaidenberg M. et al., / Cornell University. Series arXiv "math". 2020.

This paper is a survey about cylinders in Fano varieties and related problems. ...

Added: August 19, 2020

Galkin S., Shinder E., / Cornell University. Series math "arxiv.org". 2014. No. 1405.5154.

We find a relation between a cubic hypersurface Y and its Fano variety of lines F(Y) in the Grothendieck ring of varieties. We prove that if the class of an affine line is not a zero-divisor in the Grothendieck ring of varieties, then Fano variety of lines on a smooth rational cubic fourfold is birational ...

Added: May 21, 2014

Loginov K., European Journal of Mathematics 2021 Vol. 8 No. 3 P. 991-1005

Consider a family of Fano varieties π:X→B∋o over a curve germ with a smooth total space X. Assume that the generic fiber is smooth and the special fiber F=π−1(o) has simple normal crossings. Then F is called a semistable degeneration of Fano varieties. We show that the dual complex of F is a simplex of dimension not greater than dim F. Simplices ...

Added: September 3, 2021