### Working paper

## Optimal chattering solutions for longitudinal vibrations of a nonhomogeneous bar

This volume contains refereed proceedings of the IX International Conference Optimization and Applications (OPTIMA 2018) held in Petrovac, Montenegro, October 1–5, 2018. The previous conferences during 2009–2017 years attracted a significant number of students, researchers, academics, and engineers working in the field of optimization theory, methods, software, and related areas. The Conference was organized by five institutions: • The Montenegrin Academy of Sciences and Arts (Montenegro); • Federal Research Center "Computer Science and Control" of Russian Academy of Science (Russia); • University of Montenegro (Montenegro); University of Evora (Portugal); • Institute of Information and Computational Technologies (Kazakhstan). The Conference covered many optimization related areas ranging from pure theoretic studies to software and applications. The broad scope of OPTIMA made it an excellent collaboration platform for researchers from various domains related to optimization. The conference allowed specialists from different fields to present their work and discuss both theoretical and practical aspects of their research. Another important aim of the conference was to stimulate scientists and people from industry to benefit from the knowledge exchange and identify possible grounds for fruitful collaboration.

As a standard, DEStech will submit the technical science conference proceedings to be indexed in EI (Citation and Compendex). DEStech will submit the technical science conference proceedings to EI, Clarivate Analytics (formerly Thomson Reuters Web of Science) and CNKI Scholar for worldwide online citation

We study an optimal control problem for a nonlinear spherical inverted pendulum on a movable base. As the cost functional, the mean-squared deviation of the pendulum from the upper equilibrium is considered, so optimal controls stabilize the pendulum at the unstable upper position. We show that the problem under consideration posses a singular point of the second order and there are spiral-similar solution which attains the singular point in finite time.

The chapter studies a dynamic risk model defined on infinite time interval, where both insurance and per-claim reinsurance policies are chosen by the insurer in order to minimize a functional of the form of variation coefficient under constraints imposed with probability one on insured's and reinsurer's risks. We show that the optimum is achieved at constant policies, the optimal reinsurance is a partial stop loss reinsurance and the optimal insurance is a combination of stop loss and deductible policies. The results are illustrated by a numerical example involving uniformly distributed claim sizes.

We introduce a longevity feature to the classical optimal dividend problem by adding a constraint on the time of ruin of the firm. We extend the results in [HJ15], now in context of one-sided Lévy risk models. We consider de Finetti's problem in both scenarios with and without fix transaction costs, e.g. taxes. We also study the constrained analog to the so called Dual model. To characterize the solution to the aforementioned models we introduce the dual problem and show that the complementary slackness conditions are satisfied and therefore there is no duality gap. As a consequence the optimal value function can be obtained as the pointwise infimum of auxiliary value functions indexed by Lagrange multipliers. Finally, we illustrate our findings with a series of numerical examples.

We propose a model of the Russian banking system. It is based on the problem of a macroeconomic agent ”bank” which is modelled according to the principles of aggregated description, optimality and perfect foresight. To derive the equations of the model, we use the original method of relaxation of complementary slackness conditions. The model successfully reproduces main indicators of the banking system,

Book include abstracts of reports presented at the IX International Conference on Optimization Methods and Applications "Optimization and applications" (OPTIMA-2018) held in Petrovac, Montenegro, October 1 - October 5, 2018.

This book constitutes the refereed proceedings of the 9th International Conference on Optimization and Applications, OPTIMA 2018, held in Petrovac, Montenegro, in October 2018.The 35 revised full papers and the one short paper presented were carefully reviewed and selected from 103 submissions. The papers are organized in topical sections on mathematical programming; combinatorial and discrete optimization; optimal control; optimization in economy, finance and social sciences; applications.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

A new approach to the transformation of solutions of optimal control problems based on the special form of relaxation of complementary slackness conditions is presented. The proposed approach is tested on the Russian banking system model, which is derived as a solution of a linear nonautonomous optimization problem with mixed constraints. It is shown that the use of this method regularizes the model in a sense it becomes applicable for the forecasting of the main Russian banking indicators.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.